分享
北京市海淀实验中学2023学年高三3月份模拟考试数学试题(含解析).doc
下载文档

ID:13871

大小:2MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市 海淀 实验 中学 2023 学年 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数,则函数的图象大致为( ) A. B. C. D. 2.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为( ) A. B. C. D. 3.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A. B. C. D. 4.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( ) A. B. C. D. 5.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为( ). A. B. C. D. 6. “且”是“”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 7.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为( ) A. B. C.2 D. 8.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( ) A. B. C. D. 9.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为( ) A. B. C. D. 10.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( ) A.16 B.17 C.18 D.19 11.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( ) A.3 B. C. D. 12.向量,,且,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺). 14.设函数,则______. 15.函数的值域为_____. 16.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数,其中为实常数. (1)若存在,使得在区间内单调递减,求的取值范围; (2)当时,设直线与函数的图象相交于不同的两点,,证明:. 18.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围. 19.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面. (1)求证: 是的中点; (2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由. 20.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格. (1)假设某一天小张抽查出不合格的零件数为,求及的数学期望; (2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由. 附:若随机变量服从正态分布,则. 21.(12分)已知函数. (1)若,,求函数的单调区间; (2)时,若对一切恒成立,求a的取值范围. 22.(10分)设函数. (1)当时,求不等式的解集; (2)若对恒成立,求的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【题目详解】 设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确. 故选:A 【答案点睛】 本题考查了函数图像的性质,属于中档题. 2、A 【答案解析】 设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案. 【题目详解】 解:设A(),B(), 由抛物线C:x2=1y,得,则y′. ∴,, 由,可得,即x1x2=﹣1. 又,, ∴. 故选:A. 点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程, 求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些. 3、B 【答案解析】 计算求半径为,再计算球体积和圆锥体积,计算得到答案. 【题目详解】 如图所示:设球半径为,则,解得. 故求体积为:,圆锥的体积:,故. 故选:. 【答案点睛】 本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力. 4、C 【答案解析】 试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C. 考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质. 5、C 【答案解析】 设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可. 【题目详解】 根据题意画出图形: 设M,N,P分别为和的中点, 则的夹角为MN和NP夹角或其补角 可知,. 作BC中点Q,则为直角三角形; 中,由余弦定理得 , 在中, 在中,由余弦定理得 所以 故选:C 【答案点睛】 此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目. 6、A 【答案解析】 画出“,,,所表示的平面区域,即可进行判断. 【题目详解】 如图,“且”表示的区域是如图所示的正方形, 记为集合P,“”表示的区域是单位圆及其内部,记为集合Q, 显然是的真子集,所以答案是充分非必要条件, 故选:. 【答案点睛】 本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易. 7、C 【答案解析】 建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值. 【题目详解】 以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系, 设内切圆的半径为1,以(0,1)为圆心,1为半径的圆; 根据三角形面积公式得到, 可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2. 故答案为C. 【答案点睛】 这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. 8、C 【答案解析】 如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案. 【题目详解】 如图所示:在平面的投影为正方形的中心,故球心在上, ,故,, 设球半径为,则,解得,故. 故选:. 【答案点睛】 本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力. 9、A 【答案解析】 先通过降幂公式和辅助角法将函数转化为,再求最值. 【题目详解】 已知函数f(x)=sin2x+sin2(x), =, =, 因为, 所以f(x)的最小值为. 故选:A 【答案点睛】 本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 10、B 【答案解析】 由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可. 【题目详解】 解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数. 若输出 ,则不符合题意,排除; 若输出,则,符合题意. 故选:B. 【答案点睛】 本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答. 11、C 【答案解析】 根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案. 【题目详解】 显然直线过抛物线的焦点 如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E 根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC 设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME= 所以 故选:C 【答案点睛】 本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题. 12、D 【答案解析】 根据向量平行的坐标运算以及诱导公式,即可得出答案. 【题目详解】 故选:D 【答案点睛】 本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、21 3892 【答案解析】 根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积. 【题目详解】 如图所示: 正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺, 截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺, 所以, 解得, 所以该正四棱台的体积是 , 故答案为:21;3892. 【答案点睛】 本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题. 14、 【答案解析】 由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案. 【题目详解】 因为函数,则 因为,则 故 故答案为: 【答案点睛】 本题考查分段函数求值,属于简单题. 15、 【答

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开