温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年高
考试题
数学
江苏
解析
绝密★启用前
2023年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ试题
注 意 事 项
考生在答题前请认真阅读本本卷须知及各题答题要求
1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷总分值160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:
锥体的体积公式: V锥体=Sh,其中S是锥体的底面积,h是高。
一、填空题:本大题共14小题,每题5分,共70分。请把答案填写在答题卡相应的位置上.
1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},那么实数a=______▲_____.
[解析] 考查集合的运算推理。3B, a+2=3, a=1.
2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),那么z的模为______▲_____.
[解析] 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与3+2 i的模相等,z的模为2。
3、盒子中有大小相同的3只白球,1只黑球,假设从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.
[解析]考查古典概型知识。2
4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如下列图,那么其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
[解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=30
5、设函数f(x)=x(ex+ae-x)(xR)是偶函数,那么实数a=_______▲_________
[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由g(0)=0,得a=-1。
6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,那么M到双曲线右焦点的距离是___▲_______
[解析]考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。
7、右图是一个算法的流程图,那么输出S的值是______▲_______
[解析]考查流程图理解。输出。
8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,那么a1+a3+a5=____▲_____
[解析]考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当时,解得,
所以。
9、在平面直角坐标系xOy中,圆上有且仅有四个点到直线12x-5y+c=0的距离为1,那么实数c的取值范围是______▲_____[来源
[解析]考查圆与直线的位置关系。 圆半径为2,
圆心(0,0)到直线12x-5y+c=0的距离小于1,,的取值范围是(-13,13)。
10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,那么线段P1P2的长为_______▲_____。
[解析] 考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,
且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为
11、函数,那么满足不等式的x的范围是__▲___。
[解析] 考查分段函数的单调性。
12、设实数x,y满足3≤≤8,4≤≤9,那么的最大值是 ▲ 。。来源
[解析] 考查不等式的根本性质,等价转化思想。
,,,的最大值是27。
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,那么=____▲_____。
[解析] 考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。
(方法一)考虑条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有:,,,
,= 4。
(方法二),
由正弦定理,得:上式=
14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,那么S的最小值是____▲____。
[解析] 考查函数中的建模应用,等价转化思想。一题多解。
设剪成的小正三角形的边长为,那么:
(方法一)利用导数求函数最小值。
,
,
当时,递减;当时,递增;
故当时,S的最小值是。
(方法二)利用函数的方法求最小值。
令,那么:
故当时,S的最小值是。
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.
15、(本小题总分值14分)
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1) 求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2) 设实数t满足()·=0,求t的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。总分值14分。
(1)(方法一)由题设知,那么
所以
故所求的两条对角线的长分别为、。
(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,那么:
E为B、C的中点,E(0,1)
又E(0,1)为A、D的中点,所以D(1,4)
故所求的两条对角线的长分别为BC=、AD=;
(2)由题设知:=(-2,-1),。
由()·=0,得:,
从而所以。
或者:,
16、(本小题总分值14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
(1) 求证:PC⊥BC;
(2) 求点A到平面PBC的距离。
[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。总分值14分。
(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD。
因为PC平面PCD,故PC⊥BC。
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,那么:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。
又点A到平面PBC的距离等于E到平面PBC的距离的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=,故点A到平面PBC的距离等于。
(方法二)体积法:连结AC。设点A到平面PBC的距离为h。
因为AB∥DC,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得的面积。
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。
又PD=DC=1,所以。
由PC⊥BC,BC=1,得的面积。
由,,得,
故点A到平面PBC的距离等于。
17、 (14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1) 该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值
(2) 该小组分析假设干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,假设电视塔实际高度为125m,问d为多少时,α-β最大
分析:此题关键要找出C点的位置,清楚α-β最大时tan(α-β)也最大
解:(1)因为: ,
那么:,,
因为 所以 带入tanα=1.24,tanβ
得,所以H=124m
(2)由题意知:,
因为所以那么
=
=()当且仅当时,即m时最大,因为,所以也取最大值
所以,m时,取最大值
小结:此题主要考察学生对直角三角形角边关系的应用,第二问还考察学生对两角差的正切公式和根本不等式的熟练运用,第一问属于简单题,第二问属于中等题。
总结:这两题充分表达了高考是以根底性题型为主的宗旨,对学生具有扎实根底的重视。虽说第二题与别章有结合,但都属于根本知识的结合,只要学生对各章都有一个坚实的根底,解决这些题目都不会有问题。所以,在以后解三角形的复习中,我们一定要强化三角形根本定理的熟练应用,扎实根底,注重与别章根底知识综合时的灵活运用。
18、(本小题总分值16分)
在平面直角坐标系中,如图,椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
[解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等根底知识。考查运算求解能力和探究问题的能力。总分值16分。
(1)设点P(x,y),那么:F(2,0)、B(3,0)、A(-3,0)。
由,得 化简得。
故所求点P的轨迹为直线。
(2)将分别代入椭圆方程,以及得:M(2,)、N(,)
直线MTA方程为:,即,
直线NTB 方程为:,即。
联立方程组,解得:,
所以点T的坐标为。
(3)点T的坐标为
直线MTA方程为:,即,
直线NTB 方程为:,即。
分别与椭圆联立方程组,同时考虑到,
解得:、。
(方法一)当时,直线MN方程为:
令,解得:。此时必过点D(1,0);
当时,直线MN方程为:,与x轴交点为D(1,0)。
所以直线MN必过x轴上的一定点D(1,0)。
(方法二)假设,那么由及,得,
此时直线MN的方程为,过点D(1,0)。
假设,那么,直线MD的斜率,
直线ND的斜率,得,所以直线MN过D点。
因此,直线MN必过轴上的点(1,0)。
19、(本小题总分值16分)
设各项均为正数的数列的前n项和为,,数列是公差为的等差数列。
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。
[解析] 本小题主要考查等差数列的通项、求和以及根本不等式等有关知识,考查探索、分析及论证的能力。总分值16分。
(1)由题意知:,
,
化简,得:
,
当时,,适合情形。
故所求
(2)(方法一)
, 恒成立。
又,,
故,即的最大值为。
(方法二)由及,得,。
于是,对满足题设的,,有
。
所以的最大值。
另一方面,任取实数。设为偶数,令,那么符合条件,且。
于是,只要,即当时,。
所以满足条件的,从而。
因此的最大值为。
20、(本小题总分值16分)
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,那么称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)函数具有性质。给定设为实数,
,,且,
假设||<||,求的取值范围。
[解析] 本小题主要考查函数的概念、性质、图象及导数等根底知识,考查灵活运用数形结合、分类讨论的思