分享
内蒙古师范大学附属中学2023学年高三下学期联合考试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
内蒙古 师范大学 附属中学 2023 学年 下学 联合 考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在中,,,,点满足,则等于( ) A.10 B.9 C.8 D.7 2.设复数满足,在复平面内对应的点为,则( ) A. B. C. D. 3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 4.若的展开式中的系数之和为,则实数的值为( ) A. B. C. D.1 5.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是( ) A.①④ B.②③ C.①③④ D.①②④ 6.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( ) A. B. C. D. 7.已知平面向量满足,且,则所夹的锐角为( ) A. B. C. D.0 8.已知某超市2018年12个月的收入与支出数据的折线图如图所示: 根据该折线图可知,下列说法错误的是( ) A.该超市2018年的12个月中的7月份的收益最高 B.该超市2018年的12个月中的4月份的收益最低 C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益 D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元 9.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( ) A. B. C. D. 10.设为等差数列的前项和,若,,则的最小值为( ) A. B. C. D. 11.一个几何体的三视图如图所示,则该几何体的表面积为( ) A. B. C. D. 12.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于( ) A.1 B.2 C.3 D.4 二、填空题:本题共4小题,每小题5分,共20分。 13.二项式的展开式中项的系数为_____. 14.数据的标准差为_____. 15.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________. 16.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值. 18.(12分)已知函数,. (1)讨论的单调性; (2)当时,证明:. 19.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,为数列的前项和,记,证明:. 20.(12分)已知函数. (Ⅰ)当时,求不等式的解集; (Ⅱ)若存在满足不等式,求实数的取值范围. 21.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点. 求椭圆的方程; 已知是椭圆的内接三角形, ①若点为椭圆的上顶点,原点为的垂心,求线段的长; ②若原点为的重心,求原点到直线距离的最小值. 22.(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数. (1)给出所有的元素均小于的好集合.(给出结论即可) (2)求出所有满足的好集合.(同时说明理由) (3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用已知条件,表示出向量 ,然后求解向量的数量积. 【题目详解】 在中,,,,点满足,可得 则== 【答案点睛】 本题考查了向量的数量积运算,关键是利用基向量表示所求向量. 2、B 【答案解析】 设,根据复数的几何意义得到、的关系式,即可得解; 【题目详解】 解:设 ∵,∴,解得. 故选:B 【答案点睛】 本题考查复数的几何意义的应用,属于基础题. 3、D 【答案解析】 根据y与x的线性回归方程为 y=0.85x﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A正确; 回归直线过样本点的中心(),B正确; 该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确; 该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误. 故选D. 4、B 【答案解析】 由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值. 【题目详解】 由, 则展开式中的系数为,展开式中的系数为, 二者的系数之和为,得. 故选:B. 【答案点睛】 本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题. 5、A 【答案解析】 根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确. 【题目详解】 由题意得:定义域为, ,为奇函数,图象关于原点对称,①正确; 为周期函数,不是周期函数,不是周期函数,②错误; ,,不是最值,③错误; 令, 当时,,,,此时与无交点; 当时,,,,此时与无交点; 综上所述:与无交点,④正确. 故选:. 【答案点睛】 本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求. 6、B 【答案解析】 设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得. 【题目详解】 设点、,并设直线的方程为, 将直线的方程与抛物线方程联立,消去得, 由韦达定理得,, ,,,,, ,可得,, 抛物线的准线与轴交于, 的面积为,解得,则抛物线的方程为, 所以,. 故选:B. 【答案点睛】 本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题. 7、B 【答案解析】 根据题意可得,利用向量的数量积即可求解夹角. 【题目详解】 因为 即 而 所以夹角为 故选:B 【答案点睛】 本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题. 8、D 【答案解析】 用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项. 【题目详解】 用收入减去支出,求得每月收益(万元),如下表所示: 月份 1 2 3 4 5 6 7 8 9 10 11 12 收益 20 30 20 10 30 30 60 40 30 30 50 30 所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D. 【答案点睛】 本小题主要考查图表分析,考查收益的计算方法,属于基础题. 9、B 【答案解析】 根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值. 【题目详解】 由于,函数最高点与最低点的高度差为, 所以函数的半个周期,所以, 又,,则有,可得, 所以, 将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数, 所以的最小值为1, 故选:B. 【答案点睛】 该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目. 10、C 【答案解析】 根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值. 【题目详解】 依题意,解得,所以.由解得,所以前项和中,前项的和最小,且. 故选:C 【答案点睛】 本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题. 11、B 【答案解析】 由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积. 【题目详解】 由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的, 如图,故其表面积为, 故选:B. 【答案点睛】 (1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系. (2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 12、B 【答案解析】 设数列的公差为.由,成等比数列,列关于的方程组,即求公差. 【题目详解】 设数列的公差为, ①. 成等比数列,②, 解①②可得. 故选:. 【答案点睛】 本题考查等差数列基本量的计算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、15 【答案解析】 由题得,,令,解得,代入可得展开式中含x6项的系数. 【题目详解】 由题得,,令,解得, 所以二项式的展开式中项的系数为. 故答案为:15 【答案点睛】 本题主要考查了二项式定理的应用,考查了利用通项公式去求展开式中某项的系数问题. 14、 【答案解析】 先计算平均数再求解方差与标准差即可. 【题目详解】 解:样本的平均数, 这组数据的方差是 标准差, 故答案为: 【答案点睛】 本题主要考查了标准差的计算,属于基础题. 15、 【答案解析】 试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为. 考点:几何体的体积的计算. 16、6 12π﹣9 【答案解析】 过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积. 【题目详解】 ∵如图,弧田的弧AB长为4π,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分. ∴α=∠AOB==,可得∠AOD=,OA=6, ∴AB=2AD=2OAsin=2×=6, ∴弧田的面积S=S扇形OAB﹣S△OAB=

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开