温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
内蒙古
师范大学
附属中学
2023
学年
下学
联合
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中,,,,点满足,则等于( )
A.10 B.9 C.8 D.7
2.设复数满足,在复平面内对应的点为,则( )
A. B. C. D.
3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg
4.若的展开式中的系数之和为,则实数的值为( )
A. B. C. D.1
5.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是( )
A.①④ B.②③ C.①③④ D.①②④
6.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )
A. B. C. D.
7.已知平面向量满足,且,则所夹的锐角为( )
A. B. C. D.0
8.已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A.该超市2018年的12个月中的7月份的收益最高
B.该超市2018年的12个月中的4月份的收益最低
C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
9.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )
A. B. C. D.
10.设为等差数列的前项和,若,,则的最小值为( )
A. B. C. D.
11.一个几何体的三视图如图所示,则该几何体的表面积为( )
A. B.
C. D.
12.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于( )
A.1 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.二项式的展开式中项的系数为_____.
14.数据的标准差为_____.
15.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.
16.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.
18.(12分)已知函数,.
(1)讨论的单调性;
(2)当时,证明:.
19.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,为数列的前项和,记,证明:.
20.(12分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若存在满足不等式,求实数的取值范围.
21.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.
求椭圆的方程;
已知是椭圆的内接三角形,
①若点为椭圆的上顶点,原点为的垂心,求线段的长;
②若原点为的重心,求原点到直线距离的最小值.
22.(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.
(1)给出所有的元素均小于的好集合.(给出结论即可)
(2)求出所有满足的好集合.(同时说明理由)
(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用已知条件,表示出向量 ,然后求解向量的数量积.
【题目详解】
在中,,,,点满足,可得
则==
【答案点睛】
本题考查了向量的数量积运算,关键是利用基向量表示所求向量.
2、B
【答案解析】
设,根据复数的几何意义得到、的关系式,即可得解;
【题目详解】
解:设
∵,∴,解得.
故选:B
【答案点睛】
本题考查复数的几何意义的应用,属于基础题.
3、D
【答案解析】
根据y与x的线性回归方程为 y=0.85x﹣85.71,则
=0.85>0,y 与 x 具有正的线性相关关系,A正确;
回归直线过样本点的中心(),B正确;
该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;
该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.
故选D.
4、B
【答案解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.
【题目详解】
由,
则展开式中的系数为,展开式中的系数为,
二者的系数之和为,得.
故选:B.
【答案点睛】
本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.
5、A
【答案解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.
【题目详解】
由题意得:定义域为,
,为奇函数,图象关于原点对称,①正确;
为周期函数,不是周期函数,不是周期函数,②错误;
,,不是最值,③错误;
令,
当时,,,,此时与无交点;
当时,,,,此时与无交点;
综上所述:与无交点,④正确.
故选:.
【答案点睛】
本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.
6、B
【答案解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.
【题目详解】
设点、,并设直线的方程为,
将直线的方程与抛物线方程联立,消去得,
由韦达定理得,,
,,,,,
,可得,,
抛物线的准线与轴交于,
的面积为,解得,则抛物线的方程为,
所以,.
故选:B.
【答案点睛】
本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.
7、B
【答案解析】
根据题意可得,利用向量的数量积即可求解夹角.
【题目详解】
因为
即
而
所以夹角为
故选:B
【答案点睛】
本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.
8、D
【答案解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.
【题目详解】
用收入减去支出,求得每月收益(万元),如下表所示:
月份
1
2
3
4
5
6
7
8
9
10
11
12
收益
20
30
20
10
30
30
60
40
30
30
50
30
所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.
【答案点睛】
本小题主要考查图表分析,考查收益的计算方法,属于基础题.
9、B
【答案解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.
【题目详解】
由于,函数最高点与最低点的高度差为,
所以函数的半个周期,所以,
又,,则有,可得,
所以,
将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,
所以的最小值为1,
故选:B.
【答案点睛】
该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.
10、C
【答案解析】
根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.
【题目详解】
依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.
故选:C
【答案点睛】
本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.
11、B
【答案解析】
由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.
【题目详解】
由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,
如图,故其表面积为,
故选:B.
【答案点睛】
(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.
(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.
(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.
12、B
【答案解析】
设数列的公差为.由,成等比数列,列关于的方程组,即求公差.
【题目详解】
设数列的公差为,
①.
成等比数列,②,
解①②可得.
故选:.
【答案点睛】
本题考查等差数列基本量的计算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、15
【答案解析】
由题得,,令,解得,代入可得展开式中含x6项的系数.
【题目详解】
由题得,,令,解得,
所以二项式的展开式中项的系数为.
故答案为:15
【答案点睛】
本题主要考查了二项式定理的应用,考查了利用通项公式去求展开式中某项的系数问题.
14、
【答案解析】
先计算平均数再求解方差与标准差即可.
【题目详解】
解:样本的平均数,
这组数据的方差是
标准差,
故答案为:
【答案点睛】
本题主要考查了标准差的计算,属于基础题.
15、
【答案解析】
试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.
考点:几何体的体积的计算.
16、6 12π﹣9
【答案解析】
过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.
【题目详解】
∵如图,弧田的弧AB长为4π,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.
∴α=∠AOB==,可得∠AOD=,OA=6,
∴AB=2AD=2OAsin=2×=6,
∴弧田的面积S=S扇形OAB﹣S△OAB=