分享
云南省通海县三中2023学年高三下学期联考数学试题(含解析).doc
下载文档

ID:13638

大小:2MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 通海县 2023 学年 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若复数()是纯虚数,则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( ) A. B. C. D. 3.已知命题,那么为( ) A. B. C. D. 4.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( ) A. B. C. D. 5.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为() A. B. C. D. 6.设,,,则的大小关系是( ) A. B. C. D. 7.设i为数单位,为z的共轭复数,若,则( ) A. B. C. D. 8.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( ) A. B. C. D. 9.已知函数,存在实数,使得,则的最大值为( ) A. B. C. D. 10.如图,在中,,且,则( ) A.1 B. C. D. 11.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断: ①直线是函数图象的一条对称轴; ②点是函数的一个对称中心; ③函数与的图象的所有交点的横坐标之和为. 其中正确的判断是( ) A.①② B.①③ C.②③ D.①②③ 12.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( ) A.平均数为20,方差为4 B.平均数为11,方差为4 C.平均数为21,方差为8 D.平均数为20,方差为8 二、填空题:本题共4小题,每小题5分,共20分。 13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答) 14.已知,满足约束条件则的最小值为__________. 15.已知下列命题: ①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”; ②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题; ③“a>2”是“a>5”的充分不必要条件; ④“若xy=0,则x=0且y=0”的逆否命题为真命题. 其中所有真命题的序号是________. 16.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为; (Ⅰ)求椭圆的标准方程; (Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围. 18.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数. (1)求p的值; (2)求证:数列{an}为等比数列; (3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”. 19.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若a,且a≠0,证明:函数有局部对称点; (2)若函数在定义域内有局部对称点,求实数c的取值范围; (3)若函数在R上有局部对称点,求实数m的取值范围. 20.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布. (1)求物理原始成绩在区间的人数; (2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望. (附:若随机变量,则,,) 21.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图. (1)根据条形统计图,估计本届高三学生本科上线率. (2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率. (i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01); (ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围. 可能用到的参考数据:取,. 22.(10分)已知函数. (1)求不等式的解集; (2)若不等式在上恒成立,求实数的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 化简复数,由它是纯虚数,求得,从而确定对应的点的坐标. 【题目详解】 是纯虚数,则,, ,对应点为,在第二象限. 故选:B. 【答案点睛】 本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题. 2、A 【答案解析】 根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程. 【题目详解】 椭圆的方程,双曲线的方程为, 则椭圆离心率,双曲线的离心率, 由和的离心率之积为, 即, 解得, 所以渐近线方程为, 化简可得, 故选:A. 【答案点睛】 本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题. 3、B 【答案解析】 利用特称命题的否定分析解答得解. 【题目详解】 已知命题,,那么是. 故选:. 【答案点睛】 本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题. 4、C 【答案解析】 设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度. 【题目详解】 设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系: 因此有,设平面的法向量为,所以有 ,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为. 故选:C 【答案点睛】 本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力. 5、A 【答案解析】 根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系. 【题目详解】 为偶函数 图象关于轴对称 图象关于对称 时,单调递减 时,单调递增 又且 ,即 本题正确选项: 【答案点睛】 本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果. 6、A 【答案解析】 选取中间值和,利用对数函数,和指数函数的单调性即可求解. 【题目详解】 因为对数函数在上单调递增, 所以, 因为对数函数在上单调递减, 所以, 因为指数函数在上单调递增, 所以, 综上可知,. 故选:A 【答案点睛】 本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型. 7、A 【答案解析】 由复数的除法求出,然后计算. 【题目详解】 , ∴. 故选:A. 【答案点睛】 本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键. 8、D 【答案解析】 由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围 【题目详解】 解:由题意方程的实数根叫做函数的“新驻点”, 对于函数,由于, , 设,该函数在为增函数, , , 在上有零点, 故函数的“新驻点”为,那么 故选:. 【答案点睛】 本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.. 9、A 【答案解析】 画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解. 【题目详解】 由于, , 由于, 令,, 在↗,↘ 故. 故选:A 【答案点睛】 本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题. 10、C 【答案解析】 由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案 【题目详解】 由,则 ,即,所以,又共线,则. 故选:C 【答案点睛】 此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题. 11、C 【答案解析】 分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否. 详解:因为为对称中心,且最低点为, 所以A=3,且 由 所以,将带入得 , 所以 由此可得①错误,②正确,③当时,,所以与 有6个交点,设各个交点坐标依次为 ,则,所以③正确 所以选C 点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题. 12、D 【答案解析】 由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案. 【题目详解】 样本的平均数是10,方差为2, 所以样本的平均数为,方差为. 故选:D. 【答案点睛】 样本的平均数是,方差为,则的平均数为,方差为. 二、填空题:本题共4小题,每小题5分,共20分。 13、36 【答案解析】 先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果. 【题目详解】 由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法. 所以本题答案为36. 【答案点睛】 排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开