温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
四川省
自贡市
高高
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )
A. B. C. D.
2.等差数列中,已知,且,则数列的前项和中最小的是( )
A.或 B. C. D.
3.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )
A. B. C. D.
4.中,点在边上,平分,若,,,,则( )
A. B. C. D.
5.关于函数,有下述三个结论:
①函数的一个周期为;
②函数在上单调递增;
③函数的值域为.
其中所有正确结论的编号是( )
A.①② B.② C.②③ D.③
6.在直三棱柱中,己知,,,则异面直线与所成的角为( )
A. B. C. D.
7.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为( )
A. B. C. D.
8.下图所示函数图象经过何种变换可以得到的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
9.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是( )
A.若,,,,则
B.若,,,则
C.若,,,则
D.若,,,则
10.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ).
A.432 B.576 C.696 D.960
11.已知函数,若恒成立,则满足条件的的个数为( )
A.0 B.1 C.2 D.3
12.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,,其中,为正的常数,且,则的值为_______.
14.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.
15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________
16.已知,,,,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,.
(1)解不等式;
(2)若对任意的实数恒成立,求的取值范围.
18.(12分)如图,在直三棱柱中,分别是中点,且,.
求证:平面;
求点到平面的距离.
19.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.
(1)求数列的通项公式;
(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.
20.(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的余弦值.
21.(12分)已知数列满足:对一切成立.
(1)求数列的通项公式;
(2)求数列的前项和.
22.(10分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.
【题目详解】
抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A.
【答案点睛】
本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.
2、C
【答案解析】
设公差为,则由题意可得,解得,可得.令 ,可得 当时,,当时,,由此可得数列前项和中最小的.
【题目详解】
解:等差数列中,已知,且,设公差为,
则,解得 ,
.
令 ,可得,故当时,,当时,,
故数列前项和中最小的是.
故选:C.
【答案点睛】
本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.
3、C
【答案解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.
考点:外接球表面积和椎体的体积.
4、B
【答案解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.
【题目详解】
平分,根据三角形内角平分线定理可得,
又,,,,
.
.
故选:.
【答案点睛】
本题主要考查平面向量的线性运算,属于基础题.
5、C
【答案解析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.
【题目详解】
因为,故①错误;
当时,,所以,所以在上单调递增,故②正确;
函数的值域等价于函数的值域,易知,故当时,,故③正确.
故选:C.
【答案点睛】
本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.
6、C
【答案解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.
【题目详解】
连接,,如图:
又,则为异面直线与所成的角.
因为且三棱柱为直三棱柱,∴∴面,
∴,
又,,∴,
∴,解得.
故选C
【答案点睛】
考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.
7、B
【答案解析】
由题意画出图形,设球0得半径为R,AB=x, AC=y,由球0的表面积为20π,可得R2=5,再求出三角形A BC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.
【题目详解】
设球的半径为,,,
由,得.
如图:
设三角形的外心为,连接,,,
可得,则.
在中,由正弦定理可得:,
即,
由余弦定理可得,,
.
则三棱锥的体积的最大值为.
故选:.
【答案点睛】
本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题.
8、D
【答案解析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.
【题目详解】
设函数解析式为,
根据图像:,,故,即,
,,取,得到,
函数向右平移个单位得到.
故选:.
【答案点睛】
本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.
9、B
【答案解析】
根据空间中线线、线面位置关系,逐项判断即可得出结果.
【题目详解】
A选项,若,,,,则或与相交;故A错;
B选项,若,,则,又,是两个不重合的平面,则,故B正确;
C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;
D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;
故选B
【答案点睛】
本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.
10、B
【答案解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.
【题目详解】
首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;
若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;
若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;
根据分类加法、分步乘法原理,得满足要求的排队方法数为种.
故选:B.
【答案点睛】
本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.
11、C
【答案解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.
【题目详解】
①当时,,满足题意,
②当时,,,,,故不恒成立,
③当时,设,,
令,得,,得,
下面考查方程的解的个数,
设(a),则(a)
由导数的应用可得:
(a)在为减函数,在,为增函数,
则(a),
即有一解,
又,均为增函数,
所以存在1个使得成立,
综合①②③得:满足条件的的个数是2个,
故选:.
【答案点睛】
本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.
12、A
【答案解析】
先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.
【题目详解】
当时,直线和直线,即直线为和直线互相垂直,
所以“”是直线和直线互相垂直“的充分条件,
当直线和直线互相垂直时,,解得.
所以“”是直线和直线互相垂直“的不必要条件.
:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.
当时,没有零点,
所以命题是假命题.
所以是真命题,是假命题,是假命题,是假命题.
故选:.
【答案点睛】
本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
把已知等式变形,展开两角和与差的三角函数,结合已知求得值.
【题目详解】
解:由,得,
,
即,
,
又,
,解得:.
为正的常数,.
故答案为:.
【答案点睛】
本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题.
14、
【答案解析】
根据题意求出点N的坐标,将其代入椭圆的方程,求出参数m的值,再根据离心率的定义求值.
【题目详解】
由题意得,
将其代入椭圆方程得,
所以.
故答案为:.
【答案点睛】
本题考查了椭圆的标准方程及几何性质,属于中档题.
15、
【答案解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.
【题目详解】
因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,
直线与 在的图像有一个交点,
由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.
综上实数的取值范围是.
【答案点睛】
本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.
16、
【答案解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.
【题目详解】
,,,,
,,
,
,
.
故答案为:
【答案点睛】
本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (1);(2)
【答案解析】
试题分析:
(1)将绝对值不等式两边平方,化为二次不等式求解.(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法求解即可.
试题解析: