温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
湖南省
常德市
2023
学年
年中
数学
试卷
解析
湖南省常德市2023年中考数学真题试卷
一、选择题(共8小题).
1.4的倒数为( )
A. B.2 C.1 D.﹣4
2.下面几种中式窗户图形既是轴对称又是中心对称的是( )
A. B.
C. D.
3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )
A.70° B.65° C.35° D.5°
4.下列计算正确的是( )
A.a2+b2=(a+b)2 B.a2+a4=a6
C.a10÷a5=a2 D.a2•a3=a5
5.下列说法正确的是( )
A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨
B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上
C.了解一批花炮的燃放质量,应采用抽样调查方式
D.一组数据的众数一定只有一个
6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是( )
A.100π B.200π C.100π D.200π
7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2023次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2023次移动中,跳棋不可能停留的顶点是( )
A.C、E B.E、F C.G、C、E D.E、C、F
二、填空题(本大题8个小题,每小题3分,满分24分)
9.分解因式:xy2﹣4x= .
10.若代数式在实数范围内有意义,则x的取值范围是 .
11.计算:﹣+= .
12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k= .
13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:
阅读时间(x小时)
x≤3.5
3.5<x≤5
5<x≤6.5
x>6.5
人数
12
8
6
4
若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为 .
14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.
15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为 .
16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
解决问题:求方程x3﹣5x+2=0的解为 .
三、(本大题2个小题,每小题5分,满分10分)
17.计算:20+()﹣1•﹣4tan45°.
18.解不等式组.
四、(本大题2个小题,每小题6分,满分12分)
19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.
20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?
五、(本大题2个小题,每小题7分,满分14分)
21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.
(1)求一次函数的解析式;
(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.
22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)
(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)
六、(本大题2个小题,每小题8分,满分16分)
23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)所有患者的平均治疗费用是多少万元?
(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.
24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求证:EC是⊙O的切线;
(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.
七、(本大题2个小题,每小题10分,满分20分)
25.如图,已知抛物线y=ax2过点A(﹣3,).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.
(1)如图1,当D,B,F共线时,求证:
①EB=EP;
②∠EFP=30°;
(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.
2023学年参考答案
一、选择题(本大题8个小题,每小题3分,满分24分)
1.4的倒数为( )
A. B.2 C.1 D.﹣4
【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.
解:4的倒数为.
故选:A.
2.下面几种中式窗户图形既是轴对称又是中心对称的是( )
A. B.
C. D.
【分析】根据轴对称图形与中心对称图形的概念求解.
解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;
B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、不是轴对称图形,是中心对称图形,故本选项不合题意;
故选:C.
3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )
A.70° B.65° C.35° D.5°
【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.
解:作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴AB∥DE∥DE,
∴∠1=∠BCF,∠FCE=∠2,
∵∠1=30°,∠2=35°,
∴∠BCF=30°,∠FCE=35°,
∴∠BCE=65°,
故选:B.
4.下列计算正确的是( )
A.a2+b2=(a+b)2 B.a2+a4=a6
C.a10÷a5=a2 D.a2•a3=a5
【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.
解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;
B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;
C、a10÷a5=a5,原计算错误,故此选项不符合题意;
D、a2•a3=a5,原计算正确,故此选项符合题意;
故选:D.
5.下列说法正确的是( )
A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨
B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上
C.了解一批花炮的燃放质量,应采用抽样调查方式
D.一组数据的众数一定只有一个
【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.
解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;
B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;
C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;
D、一组数据的众数不一定只有一个,故本选项错误;
故选:C.
6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是( )
A.100π B.200π C.100π D.200π
【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.
解:这个圆锥的母线长==10,
这个圆锥的侧面积=×2π×10×10=100π.
故选:C.
7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.
解:由图象知,抛物线与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,故①正确,
由图象知,抛物线的对称轴直线为x=2,
∴﹣=2,
∴4a+b=0,故②正确,
由图象知,抛物线开口方向向下,
∴a<0,
∵4a+b=0,
∴b>0,而抛物线与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故③正确,
由图象知,当x=﹣2时,y<0,
∴4a﹣2b+c<0,故④错误,
即正确的结论有3个,
故选:B.
8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2023次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2023次移动中,跳棋不可能停留的顶点是( )
A.C、E B.E、F C.G、C、E D.E、C、F
【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.
解:经实验或按下方法可求得