分享
2023届天津市第一中学高三第三次模拟考试数学试卷(含解析).doc
下载文档

ID:13562

大小:1.68MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 天津市 第一 中学 第三次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数为奇函数,则( ) A. B.1 C.2 D.3 2.曲线在点处的切线方程为,则( ) A. B. C.4 D.8 3.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为 A. B. C. D.5 4.设a,b,c为正数,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不修要条件 5.设为非零实数,且,则( ) A. B. C. D. 6.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表: 实施项目 种植业 养殖业 工厂就业 服务业 参加用户比 脱贫率 那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A.倍 B.倍 C.倍 D.倍 7.设为虚数单位,为复数,若为实数,则( ) A. B. C. D. 8.某几何体的三视图如图所示,则该几何体的最长棱的长为( ) A. B. C. D. 9.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( ) A. B. C. D. 10.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( ) A. B. C. D. 11.函数,,的部分图象如图所示,则函数表达式为( ) A. B. C. D. 12.已知,,,,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________. 14.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________ 15.若双曲线的离心率为,则双曲线的渐近线方程为______. 16.已知全集为R,集合,则___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,在三棱柱中, 平面ABC. (1)证明:平面平面 (2)求二面角的余弦值. 18.(12分)在中,内角的对边分别为,且 (1)求; (2)若,且面积的最大值为,求周长的取值范围. 19.(12分)的内角,,的对边分别是,,,已知. (1)求角; (2)若,,求的面积. 20.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立. (1)当时,求某个时间段需要检查污染源处理系统的概率; (2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由. 21.(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示: 根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243; 根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984. (1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案, 方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测. 从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适? 附:相关性检验的临界值表: (2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率. 22.(10分)设函数,. (1)求函数的极值; (2)对任意,都有,求实数a的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据整体的奇偶性和部分的奇偶性,判断出的值. 【题目详解】 依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以. 故选:B 【答案点睛】 本小题主要考查根据函数的奇偶性求参数值,属于基础题. 2、B 【答案解析】 求函数导数,利用切线斜率求出,根据切线过点求出即可. 【题目详解】 因为, 所以, 故, 解得, 又切线过点, 所以,解得, 所以, 故选:B 【答案点睛】 本题主要考查了导数的几何意义,切线方程,属于中档题. 3、D 【答案解析】 根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率. 【题目详解】 依题意得,,,因此该双曲线的离心率. 【答案点睛】 本题考查了双曲线定义及双曲线的离心率,考查了运算能力. 4、B 【答案解析】 根据不等式的性质,结合充分条件和必要条件的定义进行判断即可. 【题目详解】 解:,,为正数, 当,,时,满足,但不成立,即充分性不成立, 若,则,即, 即,即,成立,即必要性成立, 则“”是“”的必要不充分条件, 故选:. 【答案点睛】 本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键. 5、C 【答案解析】 取,计算知错误,根据不等式性质知正确,得到答案. 【题目详解】 ,故,,故正确; 取,计算知错误; 故选:. 【答案点睛】 本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用. 6、B 【答案解析】 设贫困户总数为,利用表中数据可得脱贫率,进而可求解. 【题目详解】 设贫困户总数为,脱贫率, 所以. 故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍. 故选:B 【答案点睛】 本题考查了概率与统计,考查了学生的数据处理能力,属于基础题. 7、B 【答案解析】 可设,将化简,得到,由复数为实数,可得,解方程即可求解 【题目详解】 设,则. 由题意有,所以. 故选:B 【答案点睛】 本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题 8、D 【答案解析】 先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度. 【题目详解】 根据三视图可知,几何体是一个四棱锥,如图所示: 由三视图知: , 所以, 所以, 所以该几何体的最长棱的长为 故选:D 【答案点睛】 本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题. 9、A 【答案解析】 根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解. 【题目详解】 解:设点到平面的距离为,因为是中点, 所以到平面的距离为, 三棱锥的体积,解得, 作平面,垂足为的外心,所以,且, 所以在中,,此为球的半径, . 故选:A. 【答案点睛】 本题考查球的表面积,考查点到平面的距离,属于中档题. 10、A 【答案解析】 分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论. 解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为. 图钉落在黄色图形内的概率为. 落在黄色图形内的图钉数大约为. 故选:A. 点睛:应用几何概型求概率的方法 建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型; (3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型. 11、A 【答案解析】 根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求. 【题目详解】 由图像知,,,解得, 因为函数过点,所以, ,即, 解得,因为,所以, . 故选:A 【答案点睛】 本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题. 12、D 【答案解析】 令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案. 【题目详解】 时, 令,求导 ,,故单调递增: ∴, 当,设, , 又, ,即, 故. 故选:D 【答案点睛】 本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程. 【题目详解】 设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图 则,所以,,解得, 所以,,, 由,得,解得. 故答案为: 【答案点睛】 本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题. 14、 【答案解析】 根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解. 【题目详解】 如图所示,设, 由与相似,可得,解得, 再由与相似,可得,解得, 由三角形的面积公式,可得的面积为. 故答案为:. 【答案点睛】 本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题. 15、 【答案解析】 利用,得到的关系式,然后代入双曲线的渐近线方程即可求解. 【题目详解】 因

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开