温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
四川省
内江市
中学
高三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中,“”是“”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )
A. B. C. D.
3.设函数若关于的方程有四个实数解,其中,则的取值范围是( )
A. B. C. D.
4.已知定义在上的奇函数满足,且当时,,则( )
A.1 B.-1 C.2 D.-2
5.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是
A. B.
C. D.
6.设,命题“存在,使方程有实根”的否定是( )
A.任意,使方程无实根
B.任意,使方程有实根
C.存在,使方程无实根
D.存在,使方程有实根
7.已知中,角、所对的边分别是,,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.既不充分也不必要条件 D.充分必要条件
8.执行如图所示的程序框图,则输出的的值是( )
A.8 B.32 C.64 D.128
9.已知函数,则不等式的解集是( )
A. B. C. D.
10.设a,b都是不等于1的正数,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
11.已知定义在上函数的图象关于原点对称,且,若,则( )
A.0 B.1 C.673 D.674
12.关于函数有下述四个结论:( )
①是偶函数; ②在区间上是单调递增函数;
③在上的最大值为2; ④在区间上有4个零点.
其中所有正确结论的编号是( )
A.①②④ B.①③ C.①④ D.②④
二、填空题:本题共4小题,每小题5分,共20分。
13.若x,y满足,且y≥−1,则3x+y的最大值_____
14.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.
15.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.
16.已知数列的前项和为,,则满足的正整数的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).
(1)求曲线的极坐标方程;
(2)若曲线与相交于、、三点,求线段的长.
18.(12分)已知关于的不等式有解.
(1)求实数的最大值;
(2)若,,均为正实数,且满足.证明:.
19.(12分)已知函数.
(1)当时,求曲线在点的切线方程;
(2)讨论函数的单调性.
20.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)求出易倒伏玉米茎高的中位数;
(2)根据茎叶图的数据,完成下面的列联表:
抗倒伏
易倒伏
矮茎
高茎
(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
附:,
0.050
0.010
0.001
3.841
6.635
10.828
21.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:,,,
,
注:年返修率=
(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
22.(10分)已知是递增的等差数列,,是方程的根.
(1)求的通项公式;
(2)求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.
【题目详解】
余弦函数在区间上单调递减,且,,
由,可得,,由正弦定理可得.
因此,“”是“”的充分必要条件.
故选:C.
【答案点睛】
本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.
2、B
【答案解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.
【题目详解】
由题意原几何体是正三棱柱,.
故选:B.
【答案点睛】
本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.
3、B
【答案解析】
画出函数图像,根据图像知:,,,计算得到答案.
【题目详解】
,画出函数图像,如图所示:
根据图像知:,,故,且.
故.
故选:.
【答案点睛】
本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.
4、B
【答案解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.
【题目详解】
∵是定义在R上的奇函数,且;
∴;
∴;
∴的周期为4;
∵时,;
∴由奇函数性质可得;
∴;
∴时,;
∴.
故选:B.
【答案点睛】
本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.
5、B
【答案解析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.
【题目详解】
根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,
得a–1=–2a,解得a=,又f(–x)=f(x),
∴b=0,∴a+b=.故选B.
【答案点睛】
本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.
6、A
【答案解析】
只需将“存在”改成“任意”,有实根改成无实根即可.
【题目详解】
由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是
“任意,使方程无实根”.
故选:A
【答案点睛】
本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.
7、D
【答案解析】
由大边对大角定理结合充分条件和必要条件的定义判断即可.
【题目详解】
中,角、所对的边分别是、,由大边对大角定理知“”“”,
“”“”.
因此,“” 是“”的充分必要条件.
故选:D.
【答案点睛】
本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.
8、C
【答案解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.
【题目详解】
由题意,执行上述程序框图,可得
第1次循环,满足判断条件,;
第2次循环,满足判断条件,;
第3次循环,满足判断条件,;
第4次循环,满足判断条件,;
不满足判断条件,输出.
故选:C.
【答案点睛】
本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.
9、B
【答案解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.
【题目详解】
函数,可得,
时,,单调递增,
∵,
故不等式的解集等价于不等式的解集.
.
∴.
故选:B.
【答案点睛】
本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.
10、C
【答案解析】
根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.
【题目详解】
由“”,得,
得或或,
即或或,
由,得,
故“”是“”的必要不充分条件,
故选C.
【答案点睛】
本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.
11、B
【答案解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.
【题目详解】
因为为奇函数,故;
因为,故,
可知函数的周期为3;
在中,令,故,
故函数在一个周期内的函数值和为0,
故.
故选:B.
【答案点睛】
本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
12、C
【答案解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.
【题目详解】
的定义域为.
由于,所以为偶函数,故①正确.
由于,,所以在区间上不是单调递增函数,所以②错误.
当时,,
且存在,使.
所以当时,;
由于为偶函数,所以时,
所以的最大值为,所以③错误.
依题意,,当时,
,
所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.
综上所述,正确的结论序号为①④.
故选:C
【答案点睛】
本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、5.
【答案解析】
由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【题目详解】
由题意作出可行域如图阴影部分所示.
设,
当直线经过点时,取最大值5.
故答案为