温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
长春市
150
中学
第二次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数则函数的图象的对称轴方程为( )
A. B.
C. D.
2.,则与位置关系是 ( )
A.平行 B.异面
C.相交 D.平行或异面或相交
3.已知数列是公比为的正项等比数列,若、满足,则的最小值为( )
A. B. C. D.
4.已知,且,则的值为( )
A. B. C. D.
5.已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )
A. B. C. D.
6.若,则, , , 的大小关系为( )
A. B.
C. D.
7.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )
A. B. C. D.
8.执行下面的程序框图,则输出的值为 ( )
A. B. C. D.
9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( )
A.() B.()
C.() D.()
10.函数的图象大致是( )
A. B.
C. D.
11.要得到函数的图像,只需把函数的图像( )
A.向左平移个单位 B.向左平移个单位
C.向右平移个单位 D.向右平移个单位
12.函数的图象可能为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知为偶函数,当时,,则__________.
14.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.
15.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.
16.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数
(1)求函数的单调递增区间
(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由
18.(12分)如图,三棱柱中,平面,,,分别为,的中点.
(1)求证: 平面;
(2)若平面平面,求直线与平面所成角的正弦值.
19.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购
偶尔或不用网购
合计
男性
50
100
女性
70
100
合计
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
20.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .
(1)求点的坐标;
(2)求的取值范围.
21.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?
22.(10分)已知在中,内角所对的边分别为,若,,且.
(1)求的值;
(2)求的面积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
,将看成一个整体,结合的对称性即可得到答案.
【题目详解】
由已知,,令,得.
故选:C.
【答案点睛】
本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.
2、D
【答案解析】
结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.
选D.
3、B
【答案解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.
【题目详解】
数列是公比为的正项等比数列,、满足,
由等比数列的通项公式得,即,
,可得,且、都是正整数,
求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.
当且时,的最小值为.
故选:B.
【答案点睛】
本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.
4、A
【答案解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.
【题目详解】
因为,所以,又,所以,
,所以.
故选:A.
【答案点睛】
本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.
5、A
【答案解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.
【题目详解】
解:因为函数为偶函数,
所以函数的图象关于对称,
因为对任意, ,都有,
所以函数在上为减函数,
则,
解得:.
即实数的取值范围是.
故选:A.
【答案点睛】
本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.
6、D
【答案解析】
因为,所以,
因为,,所以,.
综上;故选D.
7、B
【答案解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.
【题目详解】
由于,函数最高点与最低点的高度差为,
所以函数的半个周期,所以,
又,,则有,可得,
所以,
将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,
所以的最小值为1,
故选:B.
【答案点睛】
该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.
8、D
【答案解析】
根据框图,模拟程序运行,即可求出答案.
【题目详解】
运行程序,
,
,
,
,
,
,结束循环,
故输出,
故选:D.
【答案点睛】
本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.
9、B
【答案解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.
【题目详解】
依题意得,,即,
解得或(其中,).①
又,
即(其中).②
由①②得或,
即或(其中,,),因此的最小值为.
因为,所以().
又,所以,所以,
令(),则().
因此,当取得最小值时,的单调递增区间是().
故选:B
【答案点睛】
此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.
10、B
【答案解析】
根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.
【题目详解】
设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.
【答案点睛】
本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.
11、A
【答案解析】
运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.
【题目详解】
解:
.
对于A:可得.
故选:A.
【答案点睛】
本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.
12、C
【答案解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.
【题目详解】
因为,
所以是奇函数,故排除A,B,
又,
故选:C
【答案点睛】
本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由偶函数的性质直接求解即可
【题目详解】
.
故答案为
【答案点睛】
本题考查函数的奇偶性,对数函数的运算,考查运算求解能力
14、
【答案解析】
由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。
【题目详解】
由题意可得,直线的方程为,联立方程组,可得,
设,则,,
设,则,,
又,
所以圆是以为圆心,4为半径的圆,所以点恒在圆外.
圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,
要满足题意,则,所以,
整理得,解得,
故实数的取值范围为
【答案点睛】
本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。
15、
【答案解析】
由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.
【题目详解】
设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图
则,所以,,解得,
所以,,,
由,得,解得.
故答案为:
【答案点睛】
本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.
16、
【答案解析】
求出椭圆与双曲线的离心率,根据离心率之积的