分享
2023届吉林省长春市第150中学高三第二次联考数学试卷(含解析).doc
下载文档

ID:13515

大小:2.15MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 吉林省 长春市 150 中学 第二次 联考 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数则函数的图象的对称轴方程为( ) A. B. C. D. 2.,则与位置关系是 (  ) A.平行 B.异面 C.相交 D.平行或异面或相交 3.已知数列是公比为的正项等比数列,若、满足,则的最小值为( ) A. B. C. D. 4.已知,且,则的值为( ) A. B. C. D. 5.已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( ) A. B. C. D. 6.若,则, , , 的大小关系为( ) A. B. C. D. 7.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( ) A. B. C. D. 8.执行下面的程序框图,则输出的值为 ( ) A. B. C. D. 9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( ) A.() B.() C.() D.() 10.函数的图象大致是( ) A. B. C. D. 11.要得到函数的图像,只需把函数的图像( ) A.向左平移个单位 B.向左平移个单位 C.向右平移个单位 D.向右平移个单位 12.函数的图象可能为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知为偶函数,当时,,则__________. 14.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________. 15.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________. 16.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数 (1)求函数的单调递增区间 (2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由 18.(12分)如图,三棱柱中,平面,,,分别为,的中点. (1)求证: 平面; (2)若平面平面,求直线与平面所成角的正弦值. 19.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人) 经常网购 偶尔或不用网购 合计 男性 50 100 女性 70 100 合计 (1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关? (2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率; ②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差. 参考公式: 0.15 0.10 0.05 0.025 0.010 0.005 0.001 2.072 2.706 3.841 5.024 6.635 7.879 10.828 20.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 . (1)求点的坐标; (2)求的取值范围. 21.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低? 22.(10分)已知在中,内角所对的边分别为,若,,且. (1)求的值; (2)求的面积. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 ,将看成一个整体,结合的对称性即可得到答案. 【题目详解】 由已知,,令,得. 故选:C. 【答案点睛】 本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题. 2、D 【答案解析】 结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交. 选D. 3、B 【答案解析】 利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值. 【题目详解】 数列是公比为的正项等比数列,、满足, 由等比数列的通项公式得,即, ,可得,且、都是正整数, 求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值. 当且时,的最小值为. 故选:B. 【答案点睛】 本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题. 4、A 【答案解析】 由及得到、,进一步得到,再利用两角差的正切公式计算即可. 【题目详解】 因为,所以,又,所以, ,所以. 故选:A. 【答案点睛】 本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题. 5、A 【答案解析】 根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案. 【题目详解】 解:因为函数为偶函数, 所以函数的图象关于对称, 因为对任意, ,都有, 所以函数在上为减函数, 则, 解得:. 即实数的取值范围是. 故选:A. 【答案点睛】 本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题. 6、D 【答案解析】 因为,所以, 因为,,所以,. 综上;故选D. 7、B 【答案解析】 根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值. 【题目详解】 由于,函数最高点与最低点的高度差为, 所以函数的半个周期,所以, 又,,则有,可得, 所以, 将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数, 所以的最小值为1, 故选:B. 【答案点睛】 该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目. 8、D 【答案解析】 根据框图,模拟程序运行,即可求出答案. 【题目详解】 运行程序, , , , , , ,结束循环, 故输出, 故选:D. 【答案点睛】 本题主要考查了程序框图,循环结构,条件分支结构,属于中档题. 9、B 【答案解析】 根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间. 【题目详解】 依题意得,,即, 解得或(其中,).① 又, 即(其中).② 由①②得或, 即或(其中,,),因此的最小值为. 因为,所以(). 又,所以,所以, 令(),则(). 因此,当取得最小值时,的单调递增区间是(). 故选:B 【答案点睛】 此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目. 10、B 【答案解析】 根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案. 【题目详解】 设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B. 【答案点睛】 本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断. 11、A 【答案解析】 运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案. 【题目详解】 解: . 对于A:可得. 故选:A. 【答案点睛】 本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数. 12、C 【答案解析】 先根据是奇函数,排除A,B,再取特殊值验证求解. 【题目详解】 因为, 所以是奇函数,故排除A,B, 又, 故选:C 【答案点睛】 本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由偶函数的性质直接求解即可 【题目详解】 . 故答案为 【答案点睛】 本题考查函数的奇偶性,对数函数的运算,考查运算求解能力 14、 【答案解析】 由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。 【题目详解】 由题意可得,直线的方程为,联立方程组,可得, 设,则,, 设,则,, 又, 所以圆是以为圆心,4为半径的圆,所以点恒在圆外. 圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点, 要满足题意,则,所以, 整理得,解得, 故实数的取值范围为 【答案点睛】 本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。 15、 【答案解析】 由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程. 【题目详解】 设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图 则,所以,,解得, 所以,,, 由,得,解得. 故答案为: 【答案点睛】 本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题. 16、 【答案解析】 求出椭圆与双曲线的离心率,根据离心率之积的

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开