温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
哈密
石油
高级中学
考前
热身
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数,当时,,则( )
A. B. C.1 D.
2.已知向量与向量平行,,且,则( )
A. B.
C. D.
3.已知,,,则a,b,c的大小关系为( )
A. B. C. D.
4.已知平面向量,,满足:,,则的最小值为( )
A.5 B.6 C.7 D.8
5.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为
A. B. C.2 D.
6.下列函数中,值域为的偶函数是( )
A. B. C. D.
7.已知,则p是q的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
8.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于( )
A. B.2
C.3 D.6
9.执行下面的程序框图,则输出的值为 ( )
A. B. C. D.
10.设是定义域为的偶函数,且在单调递增,,则( )
A. B.
C. D.
11.若满足,且目标函数的最大值为2,则的最小值为( )
A.8 B.4 C. D.6
12.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设,分别是定义在上的奇函数和偶函数,且,则_________
14.抛物线的焦点坐标为______.
15.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.
16.若复数满足,其中是虚数单位,是的共轭复数,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:
(1)证明:平面平面ABC;
(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.
18.(12分)的内角,,的对边分别为,,,已知的面积为.
(1)求;
(2)若,,求的周长.
19.(12分)已知函数
(1)解不等式;
(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.
20.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点
(1)求椭圆的方程;
(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.
21.(12分)设
(1)证明:当时,;
(2)当时,求整数的最大值.(参考数据:,)
22.(10分)设数列满足,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.
【题目详解】
,
时,,,∴,
由题意,∴.
故选:A.
【答案点睛】
本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.
2、B
【答案解析】
设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.
【题目详解】
设,且,,
由得,即,①,由,②,
所以,解得,因此,.
故选:B.
【答案点睛】
本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.
3、D
【答案解析】
与中间值1比较,可用换底公式化为同底数对数,再比较大小.
【题目详解】
,,又,∴,即,
∴.
故选:D.
【答案点睛】
本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.
4、B
【答案解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.
【题目详解】
建立平面直角坐标系如下图所示,设,,且,由于,所以.
.所以
,即.
.当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.
故选:B
【答案点睛】
本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.
5、B
【答案解析】
求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.
【题目详解】
设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.
【答案点睛】
本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.
6、C
【答案解析】
试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.
考点:1、函数的奇偶性;2、函数的值域.
7、B
【答案解析】
根据诱导公式化简再分析即可.
【题目详解】
因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.
故选:B
【答案点睛】
本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.
8、A
【答案解析】
由圆心到渐近线的距离等于半径列方程求解即可.
【题目详解】
双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=.
答案:A
【答案点睛】
本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.
9、D
【答案解析】
根据框图,模拟程序运行,即可求出答案.
【题目详解】
运行程序,
,
,
,
,
,
,结束循环,
故输出,
故选:D.
【答案点睛】
本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.
10、C
【答案解析】
根据偶函数的性质,比较即可.
【题目详解】
解:
显然,所以
是定义域为的偶函数,且在单调递增,
所以
故选:C
【答案点睛】
本题考查对数的运算及偶函数的性质,是基础题.
11、A
【答案解析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.
【题目详解】
作出可行域,如图所示
由,可得.
平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.
解方程组,得.
.
,
当且仅当,即时,等号成立.
的最小值为8.
故选:.
【答案点睛】
本题考查简单的线性规划,考查基本不等式,属于中档题.
12、C
【答案解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.
【题目详解】
最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.
【答案点睛】
本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
令,结合函数的奇偶性,求得,即可求解的值,得到答案.
【题目详解】
由题意,函数分别是上的奇函数和偶函数,且,
令,可得,
所以.
故答案为:1.
【答案点睛】
本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.
14、
【答案解析】
变换得到,计算焦点得到答案.
【题目详解】
抛物线的标准方程为,,所以焦点坐标为.
故答案为:
【答案点睛】
本题考查了抛物线的焦点坐标,属于简单题.
15、
【答案解析】
注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.
【题目详解】
由已知,,
,又,故,
,所以的最小值为.
故答案为:.
【答案点睛】
本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.
16、
【答案解析】
设,代入已知条件进行化简,根据复数相等的条件,求得的值.
【题目详解】
设,由,得,所以,所以.
故答案为:
【答案点睛】
本小题主要考查共轭复数,考查复数相等的条件,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析(2)
【答案解析】
(1) 设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,
则平面,即可证得平面平面.
(2) 由线面成角的定义可知是直线与平面所成的角,
且,最大即为最短时,即是的中点
建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.
【题目详解】
(1)设AC的中点为O,连接BO,PO.
由题意,得,,.
在中,,O为AC的中点,,
在中,,,,,.
,平面,平面ABC,
平面PAC,平面平面ABC.
(2)由(1)知,,,平面PAC,
是直线BM与平面PAC所成的角,
且,
当OM最短时,即M是PA的中点时,最大.
由平面ABC,,
,,
于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,
则,
,
设平面MBC的法向量为,直线MA与平面MBC所成角为,
则由得:.
令,得,,即.
则.
直线MA与平面MBC所成角的正弦值为.
【答案点睛】
本题考查面面垂直的证明,考查线面成角问题,借助空间向量是解决线面成角问题的关键,难度一般.
18、(1)(2)
【答案解析】
(1)根据三角形面积公式和正弦定理可得答案;(2)根据两角余弦公式可得,即可求出,再根据正弦定理可得,根据余弦定理即可求出,问题得以解决.
【题目详解】
(1)由三角形的面积公式可得,
,
由正弦定理可得,
,
;
(2),
,
,
,,
则由,可得:,由,
可得:,
,可得:,经检验符合题意,
三角形的周长.
(实际上可解得,符合三边关系).
【答案点睛】
本题考查了三角形的面积公式、两角和的余弦公式、诱导公式,考查正弦定理,余弦定理在解三角形中的综合应用,考查了学生的运算能力,考查了转化思想,属于中档题.
19、(1)(2)
【答案解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.
(2)利用绝对值三角不等式,求得的取值范