温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
天津市
第四
中学
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量服从正态分布,且,则( )
A. B. C. D.
2.函数的部分图像大致为( )
A. B.
C. D.
3.下列函数中,值域为的偶函数是( )
A. B. C. D.
4.等差数列中,,,则数列前6项和为()
A.18 B.24 C.36 D.72
5.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )
A. B. C. D.
6.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
7.已知函数,则函数的零点所在区间为( )
A. B. C. D.
8.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则( )
A., B.,
C., D.,
9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )
A.1月至8月空气合格天数超过天的月份有个
B.第二季度与第一季度相比,空气达标天数的比重下降了
C.8月是空气质量最好的一个月
D.6月份的空气质量最差.
10.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )
A.国防大学,研究生 B.国防大学,博士
C.军事科学院,学士 D.国防科技大学,研究生
11.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为
A.240,18 B.200,20
C.240,20 D.200,18
12.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.
14.某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_____________个.
15.过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为______.
16.下图是一个算法的流程图,则输出的x的值为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形.
(1)求椭圆的方程;
(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.
18.(12分)设函数 .
(I)求的最小正周期;
(II)若且,求的值.
19.(12分)已知双曲线及直线.
(1)若l与C有两个不同的交点,求实数k的取值范围;
(2)若l与C交于A,B两点,O是原点,且,求实数k的值.
20.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.
(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?
城镇居民
农村居民
合计
经常阅读
100
30
不经常阅读
合计
200
(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.
附:,其中.
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
21.(12分)设数列的前列项和为,已知.
(1)求数列的通项公式;
(2)求证:.
22.(10分)在角中,角A、B、C的对边分别是a、b、c,若.
(1)求角A;
(2)若的面积为,求的周长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据在关于对称的区间上概率相等的性质求解.
【题目详解】
,,
,.
故选:C.
【答案点睛】
本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.
2、A
【答案解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.
【题目详解】
解:因为,
所以的定义域为,
则,
∴为偶函数,图象关于轴对称,排除选项,
且当时,,排除选项,所以正确.
故选:A.
【答案点睛】
本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.
3、C
【答案解析】
试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.
考点:1、函数的奇偶性;2、函数的值域.
4、C
【答案解析】
由等差数列的性质可得,根据等差数列的前项和公式可得结果.
【题目详解】
∵等差数列中,,∴,即,
∴,
故选C.
【答案点睛】
本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.
5、D
【答案解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.
【题目详解】
由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有
种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二
种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率
为,故甲、乙两人不在同一个单位的概率为.
故选:D.
【答案点睛】
本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.
6、B
【答案解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
7、A
【答案解析】
首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.
【题目详解】
当时,.
当时,为增函数,且,则是唯一零点.由于“当时,.”,所以
令,得,因为,,
所以函数的零点所在区间为.
故选:A
【答案点睛】
本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.
8、B
【答案解析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.
【题目详解】
可能的取值为;可能的取值为,
,,,
故,.
,,
故,,
故,.故选B.
【答案点睛】
离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.
9、D
【答案解析】
由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.
10、C
【答案解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.
【题目详解】
由题意①甲不是军事科学院的,③乙不是军事科学院的;
则丙来自军事科学院;
由②来自军事科学院的不是博士,则丙不是博士;
由⑤国防科技大学的是研究生,可知丙不是研究生,
故丙为学士.
综上可知,丙来自军事科学院,学位是学士.
故选:C.
【答案点睛】
本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.
11、A
【答案解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.
【题目详解】
样本容量为:(150+250+400)×30%=240,
∴抽取的户主对四居室满意的人数为:
故选A.
【答案点睛】
本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.
12、D
【答案解析】
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.
【题目详解】
解:因为,,所以,即
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,
则,0,,,,,,0,,,1,,
,,
,,,
设平面的法向量,
则,取,得,
同理可求平面的法向量,
平面的法向量,平面的法向量.
,,.
.
故选:D.
【答案点睛】
本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、①③④
【答案解析】
先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.
【题目详解】
∵,∴曲线在点处的切线方程为,
则.
∵,∴,
则是首项为1,公比为的等比数列,
从而,,.
故所有正确结论的编号是①③④.
故答案为:①③④
【答案点睛】
本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.
14、
【答案解析】
根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.
【题目详解】
解:,
.
则分钟至少能做到个仰卧起坐的初三女生人数为.
故答案为:.
【答案点睛】
本题主要考查频率分布直方图,属于基础题.
15、
【答案解析】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,根据抛物线定义和求得,从而求得直线l的倾斜角.
【题目详解】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,由抛物线的定