温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
华中师范大学
第一
附中
第一次
调研
测试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数、满足不等式组,则的最大值为( )
A. B. C. D.
2.已知函数()的部分图象如图所示,且,则的最小值为( )
A. B.
C. D.
3.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为( )
A. B. C. D.
4.设,,则的值为( )
A. B.
C. D.
5.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )
A. B. C. D.
6.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )
A. B. C. D.
7.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )
A. B. C. D.
8.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )
A. B. C. D.
9.下列函数中,既是偶函数又在区间上单调递增的是( )
A. B. C. D.
10.如果实数满足条件,那么的最大值为( )
A. B. C. D.
11.已知定义在上的函数,,,,则,,的大小关系为( )
A. B. C. D.
12.已知数列满足:.若正整数使得成立,则( )
A.16 B.17 C.18 D.19
二、填空题:本题共4小题,每小题5分,共20分。
13.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.
14.已知函数,则不等式的解集为____________.
15.已知的终边过点,若,则__________.
16.已知集合,,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
18.(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.
19.(12分)已知函数,其导函数为,
(1)若,求不等式的解集;
(2)证明:对任意的,恒有.
20.(12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数有两个极值点,求证:.
21.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.
(Ⅰ)证明:;
(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.
22.(10分)设等比数列的前项和为,若
(Ⅰ)求数列的通项公式;
(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.
【题目详解】
画出不等式组所表示平面区域,如图所示,
由目标函数,化为直线,当直线过点A时,
此时直线在y轴上的截距最大,目标函数取得最大值,
又由,解得,
所以目标函数的最大值为,故选A.
【答案点睛】
本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.
2、A
【答案解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.
【题目详解】
由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,
∴的最小值是.
故选:A.
【答案点睛】
本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.
3、B
【答案解析】
由题,侧棱底面,,,,则根据余弦定理可得 ,的外接圆圆心
三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为
点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键.
4、D
【答案解析】
利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.
【题目详解】
,,
,,
,,,
,
故选:D.
【答案点睛】
该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.
5、C
【答案解析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.
【题目详解】
根据题意,点P一定在左支上.
由及,得,,
再结合M为的中点,得,
又因为OM是的中位线,又,且,
从而直线与双曲线的左支只有一个交点.
在中.——①
由,得. ——②
由①②,解得,即,则渐近线方程为.
故选:C.
【答案点睛】
本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.
6、D
【答案解析】
设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.
【题目详解】
设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.
故选:D.
【答案点睛】
本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.
7、C
【答案解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.
【题目详解】
由平面平面,
平面平面,平面
所以平面,又平面
所以,又
所以作轴//,建立空间直角坐标系
如图
设,所以
则
所以
所以
故选:C
【答案点睛】
本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.
8、B
【答案解析】
由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.
【题目详解】
由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.
故选B.
【答案点睛】
本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.
9、C
【答案解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.
【题目详解】
A:为非奇非偶函数,不符合题意;
B:在上不单调,不符合题意;
C:为偶函数,且在上单调递增,符合题意;
D:为非奇非偶函数,不符合题意.
故选:C.
【答案点睛】
本小题主要考查函数的单调性和奇偶性,属于基础题.
10、B
【答案解析】
解:当直线过点时,最大,故选B
11、D
【答案解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.
【题目详解】
当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.
【答案点睛】
本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.
12、B
【答案解析】
由题意可得,,时,,将换为,两式相除,,,
累加法求得即有,结合条件,即可得到所求值.
【题目详解】
解:,
即,,
时,,
,
两式相除可得,
则,,
由,
,
,
,,
可得
,
且,
正整数时,要使得成立,
则,
则,
故选:.
【答案点睛】
本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。
【题目详解】
由题意可得,直线的方程为,联立方程组,可得,
设,则,,
设,则,,
又,
所以圆是以为圆心,4为半径的圆,所以点恒在圆外.
圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,
要满足题意,则,所以,
整理得,解得,
故实数的取值范围为
【答案点睛】
本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。
14、
【答案解析】
,,分类讨论即可.
【题目详解】
由已知,,,
若,则或
解得或,所以不等式的解集为.
故答案为:
【答案点睛】
本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.
15、
【答案解析】
】由题意利用任意角的三角函数的定义,求得的值.
【题目详解】
∵的终边过点,若,
.
即答案为-2.
【答案点睛】
本题主要考查任意角的三角函数的定义和诱导公式,属基础题.
16、
【答案解析】
直接根据集合和集合求交集即可.
【题目详解】
解: ,
,
所以.
故答案为:
【答案点睛】
本题考查集合的交集运算,是基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (1) 曲线表示的是焦点为,准线为的抛物线;(2)8.
【答案解析】
试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的