温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
嘉兴市
重点中学
下学
第一次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a>b>0,c>1,则下列各式成立的是( )
A.sina>sinb B.ca>cb C.ac<bc D.
2.已知,都是偶函数,且在上单调递增,设函数,若,则( )
A.且
B.且
C.且
D.且
3.已知全集,则集合的子集个数为( )
A. B. C. D.
4.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )
A. B.2 C.4 D.
5.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )
A. B. C. D.
6.设是虚数单位,,,则( )
A. B. C.1 D.2
7.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )
A. B. C. D.
8.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )
A. B. C. D.
9.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )
A. B. C. D.
10.已知等差数列的前项和为,若,,则数列的公差为( )
A. B. C. D.
11.( )
A. B. C. D.
12.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
14.在的展开式中,的系数为________.
15.若x,y满足,且y≥−1,则3x+y的最大值_____
16.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.
(1)若,求直线与轴的交点坐标;
(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.
18.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.
(1)求点,的极坐标;
(2)若点为曲线上的动点,为线段的中点,求的最大值.
19.(12分)已知,函数.
(Ⅰ)若在区间上单调递增,求的值;
(Ⅱ)若恒成立,求的最大值.(参考数据:)
20.(12分)已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.
(1)求椭圆的方程;
(2)若圆上存在两点,,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.
21.(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.
(1).求证:平面平面;
(2).若二面角的余弦值为,求直线与平面所成角的正弦值.
22.(10分)在中,角的对边分别为,且.
(1)求角的大小;
(2)已知外接圆半径,求的周长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据函数单调性逐项判断即可
【题目详解】
对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;
对B,因为y=cx为增函数,且a>b,所以ca>cb,正确
对C,因为y=xc为增函数,故 ,错误;
对D, 因为在为减函数,故 ,错误
故选B.
【答案点睛】
本题考查了不等式的基本性质以及指数函数的单调性,属基础题.
2、A
【答案解析】
试题分析:由题意得,,
∴,,
∵,∴,∴,
∴若:,,∴,
若:,,∴,
若:,,∴,
综上可知,同理可知,故选A.
考点:1.函数的性质;2.分类讨论的数学思想.
【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.
3、C
【答案解析】
先求B.再求,求得则子集个数可求
【题目详解】
由题=, 则集合,故其子集个数为
故选C
【答案点睛】
此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题
4、C
【答案解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.
【题目详解】
圆可化为.
设,
则的斜率分别为,
所以的方程为,即,
,即,
由于都过点,所以,
即都在直线上,
所以直线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
【答案点睛】
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
5、A
【答案解析】
在中,由余弦定理,得到,再利用即可建立的方程.
【题目详解】
由已知,,在中,由余弦定理,得
,又,,所以,
,
故选:A.
【答案点睛】
本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.
6、C
【答案解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.
【题目详解】
解:,
,解得:.
故选:C.
【答案点睛】
本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.
7、C
【答案解析】
模拟执行程序框图,即可容易求得结果.
【题目详解】
运行该程序:
第一次,,;
第二次,,;
第三次,,,
…;
第九十八次,,;
第九十九次,,,
此时要输出的值为99.
此时.
故选:C.
【答案点睛】
本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.
8、A
【答案解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.
【题目详解】
由已知可得,,所以,从而双曲线方程为
,不妨设点在双曲线右支上运动,则,当时,
此时,所以,
,所以;
当轴时,,所以,又为锐角三
角形,所以.
故选:A.
【答案点睛】
本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.
9、D
【答案解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.
【题目详解】
如图,设双曲线的右焦点为,连接,连接并延长交右支于.
因为,故四边形为平行四边形,故.
又双曲线为中心对称图形,故.
设,则,故,故.
因为为直角三角形,故,解得.
在中,有,所以.
故选:D.
【答案点睛】
本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.
10、D
【答案解析】
根据等差数列公式直接计算得到答案.
【题目详解】
依题意,,故,故,故,故选:D.
【答案点睛】
本题考查了等差数列的计算,意在考查学生的计算能力.
11、A
【答案解析】
分子分母同乘,即根据复数的除法法则求解即可.
【题目详解】
解:,
故选:A
【答案点睛】
本题考查复数的除法运算,属于基础题.
12、A
【答案解析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.
【题目详解】
如图,
取BC中点G,连接AG,DG,则,,
分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,
则O为四面体的球心,
由,得正方形OEGF的边长为,则,
四面体的外接球的半径,
球O的表面积为.
故选A.
【答案点睛】
本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.
【题目详解】
根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
所以该验证码的中间数字是7的概率为.
故答案为:
【答案点睛】
本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.
14、
【答案解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.
【题目详解】
的展开式中,
所求项为:,
的系数为.
故答案为:.
【答案点睛】
本题考查二项展开式定理的应用,属于基础题.
15、5.
【答案解析】
由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【题目详解】
由题意作出可行域如图阴影部分所示.
设,
当直线经过点时,取最大值5.
故答案为:5
【答案点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
16、
【答案解析】
先求出向量和夹角的余弦值,再由公式即得.
【题目详解】
如图,过点作的平行线交于点,那么向量