温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
克拉玛依市
北师大
克拉玛依
附属中学
第六
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( ).
A. B. C. D.
2.如图,在中,,是上一点,若,则实数的值为( )
A. B. C. D.
3.已知定义在上的奇函数满足,且当时,,则( )
A.1 B.-1 C.2 D.-2
4.若实数、满足,则的最小值是( )
A. B. C. D.
5.已知复数,则( )
A. B. C. D.
6.在直三棱柱中,己知,,,则异面直线与所成的角为( )
A. B. C. D.
7.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
8.已知点、.若点在函数的图象上,则使得的面积为的点的个数为( )
A. B. C. D.
9.的展开式中的系数为( )
A. B. C. D.
10.已知集合,,若AÜB,则实数的取值范围是( )
A. B. C. D.
11.函数的定义域为( )
A. B. C. D.
12.已知平面,,直线满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.若实数,满足不等式组,则的最小值为______.
14.已知数列满足,,若,则数列的前n项和______.
15.已知复数z是纯虚数,则实数a=_____,|z|=_____.
16.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列满足(),数列的前项和,(),且,.
(1)求数列的通项公式:
(2)求数列的通项公式.
(3)设,记是数列的前项和,求正整数,使得对于任意的均有.
18.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号
1
2
3
4
5
6
7
数学成绩
60
65
70
75
85
87
90
物理成绩
70
77
80
85
90
86
93
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;
②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程,
其中,.
76
83
812
526
19.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.
(1)求的取值范围.
(2)设直线与圆相交于两点,若,求的值.
20.(12分)(选修4-4:坐标系与参数方程)
在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.
21.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.
(1)当平面,求的值;
(2)当是中点时,求四面体的体积.
22.(10分)如图,在四棱锥中,平面, 底面是矩形,,,分别是,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设, 求三棱锥的体积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.
【题目详解】
解:把函数的图象向右平移个单位长度得到函数的图象,
若函数在区间,上单调递增,
在区间,上,,,
则当最大时,,求得,
故选:C.
【答案点睛】
本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.
2、C
【答案解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.
【题目详解】
由题意及图,,
又,,所以,∴(1﹣m),
又t,所以,解得m,t,
故选C.
【答案点睛】
本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.
3、B
【答案解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.
【题目详解】
∵是定义在R上的奇函数,且;
∴;
∴;
∴的周期为4;
∵时,;
∴由奇函数性质可得;
∴;
∴时,;
∴.
故选:B.
【答案点睛】
本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.
4、D
【答案解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案
【题目详解】
作出不等式组所表示的可行域如下图所示:
联立,得,可得点,
由得,平移直线,
当该直线经过可行域的顶点时,该直线在轴上的截距最小,
此时取最小值,即.
故选:D.
【答案点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.
5、B
【答案解析】
利用复数除法、加法运算,化简求得,再求得
【题目详解】
,故.
故选:B
【答案点睛】
本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.
6、C
【答案解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.
【题目详解】
连接,,如图:
又,则为异面直线与所成的角.
因为且三棱柱为直三棱柱,∴∴面,
∴,
又,,∴,
∴,解得.
故选C
【答案点睛】
考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.
7、A
【答案解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,
求出等式左边式子的范围,将等式右边代入,从而求解.
【题目详解】
解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,
,
当时,,
当时,,
,
综上:.
故选:A.
【答案点睛】
本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.
8、C
【答案解析】
设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.
【题目详解】
设点的坐标为,直线的方程为,即,
设点到直线的距离为,则,解得,
另一方面,由点到直线的距离公式得,
整理得或,,解得或或.
综上,满足条件的点共有三个.
故选:C.
【答案点睛】
本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.
9、C
【答案解析】
由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.
点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.
10、D
【答案解析】
先化简,再根据,且AÜB求解.
【题目详解】
因为,
又因为,且AÜB,
所以.
故选:D
【答案点睛】
本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.
11、C
【答案解析】
函数的定义域应满足
故选C.
12、A
【答案解析】
,是相交平面,直线平面,则“” “”,反之,直线满足,则或//或平面,即可判断出结论.
【题目详解】
解:已知直线平面,则“” “”,
反之,直线满足,则或//或平面,
“”是“”的充分不必要条件.
故选:A.
【答案点睛】
本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、5
【答案解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解
【题目详解】
画出不等式组,表示的平面区域如图阴影区域所示,
令,则.分析知,当,时,取得最小值,且.
【答案点睛】
本题考查线性规划问题,属于基础题
14、
【答案解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.
【题目详解】
由题为等差数列,∴,∴,∴,∴,故答案为
【答案点睛】
本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.
15、1 1
【答案解析】
根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.
【题目详解】
复数z,
∵复数z是纯虚数,∴,解得a=1,
∴z=i,∴|z|=1,
故答案为:1,1.
【答案点睛】
此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.
16、
【答案解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.
【题目详解】
解:双曲线的左右焦点分别关于两条渐近线的对称点重合,
一条渐近线的斜率为1,即,
,,
故答案为:.
【答案点睛】
本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)().(2),.(3)
【答案解析】
(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;
(2)由递推公式,得, 结合数列性质可得数列相