分享
2023届克拉玛依市北师大克拉玛依附属中学高三第六次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 克拉玛依市 北师大 克拉玛依 附属中学 第六 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( ). A. B. C. D. 2.如图,在中,,是上一点,若,则实数的值为( ) A. B. C. D. 3.已知定义在上的奇函数满足,且当时,,则( ) A.1 B.-1 C.2 D.-2 4.若实数、满足,则的最小值是( ) A. B. C. D. 5.已知复数,则( ) A. B. C. D. 6.在直三棱柱中,己知,,,则异面直线与所成的角为( ) A. B. C. D. 7.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 A. B. C. D. 8.已知点、.若点在函数的图象上,则使得的面积为的点的个数为( ) A. B. C. D. 9.的展开式中的系数为( ) A. B. C. D. 10.已知集合,,若AÜB,则实数的取值范围是( ) A. B. C. D. 11.函数的定义域为( ) A. B. C. D. 12.已知平面,,直线满足,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 二、填空题:本题共4小题,每小题5分,共20分。 13.若实数,满足不等式组,则的最小值为______. 14.已知数列满足,,若,则数列的前n项和______. 15.已知复数z是纯虚数,则实数a=_____,|z|=_____. 16.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列满足(),数列的前项和,(),且,. (1)求数列的通项公式: (2)求数列的通项公式. (3)设,记是数列的前项和,求正整数,使得对于任意的均有. 18.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析. (1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果) (2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表: 学生序号 1 2 3 4 5 6 7 数学成绩 60 65 70 75 85 87 90 物理成绩 70 77 80 85 90 86 93 ①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望; ②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分? 附:线性回归方程, 其中,. 76 83 812 526 19.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外. (1)求的取值范围. (2)设直线与圆相交于两点,若,求的值. 20.(12分)(选修4-4:坐标系与参数方程) 在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)过点且与直线平行的直线交于,两点,求点到,的距离之积. 21.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点. (1)当平面,求的值; (2)当是中点时,求四面体的体积. 22.(10分)如图,在四棱锥中,平面, 底面是矩形,,,分别是,的中点. (Ⅰ)求证:平面; (Ⅱ)设, 求三棱锥的体积. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值. 【题目详解】 解:把函数的图象向右平移个单位长度得到函数的图象, 若函数在区间,上单调递增, 在区间,上,,, 则当最大时,,求得, 故选:C. 【答案点睛】 本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题. 2、C 【答案解析】 由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值. 【题目详解】 由题意及图,, 又,,所以,∴(1﹣m), 又t,所以,解得m,t, 故选C. 【答案点睛】 本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题. 3、B 【答案解析】 根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1. 【题目详解】 ∵是定义在R上的奇函数,且; ∴; ∴; ∴的周期为4; ∵时,; ∴由奇函数性质可得; ∴; ∴时,; ∴. 故选:B. 【答案点睛】 本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题. 4、D 【答案解析】 根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案 【题目详解】 作出不等式组所表示的可行域如下图所示: 联立,得,可得点, 由得,平移直线, 当该直线经过可行域的顶点时,该直线在轴上的截距最小, 此时取最小值,即. 故选:D. 【答案点睛】 本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题. 5、B 【答案解析】 利用复数除法、加法运算,化简求得,再求得 【题目详解】 ,故. 故选:B 【答案点睛】 本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题. 6、C 【答案解析】 由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角. 【题目详解】 连接,,如图: 又,则为异面直线与所成的角. 因为且三棱柱为直三棱柱,∴∴面, ∴, 又,,∴, ∴,解得. 故选C 【答案点睛】 考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题. 7、A 【答案解析】 求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,, 求出等式左边式子的范围,将等式右边代入,从而求解. 【题目详解】 解:由题意可得,焦点F(1,0),准线方程为x=−1, 过点P作PM垂直于准线,M为垂足, 由抛物线的定义可得|PF|=|PM|=x+1, 记∠KPF的平分线与轴交于 根据角平分线定理可得, , 当时,, 当时,, , 综上:. 故选:A. 【答案点睛】 本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题. 8、C 【答案解析】 设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论. 【题目详解】 设点的坐标为,直线的方程为,即, 设点到直线的距离为,则,解得, 另一方面,由点到直线的距离公式得, 整理得或,,解得或或. 综上,满足条件的点共有三个. 故选:C. 【答案点睛】 本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题. 9、C 【答案解析】 由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C. 点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解. 10、D 【答案解析】 先化简,再根据,且AÜB求解. 【题目详解】 因为, 又因为,且AÜB, 所以. 故选:D 【答案点睛】 本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题. 11、C 【答案解析】 函数的定义域应满足 故选C. 12、A 【答案解析】 ,是相交平面,直线平面,则“” “”,反之,直线满足,则或//或平面,即可判断出结论. 【题目详解】 解:已知直线平面,则“” “”, 反之,直线满足,则或//或平面, “”是“”的充分不必要条件. 故选:A. 【答案点睛】 本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力. 二、填空题:本题共4小题,每小题5分,共20分。 13、5 【答案解析】 根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解 【题目详解】 画出不等式组,表示的平面区域如图阴影区域所示, 令,则.分析知,当,时,取得最小值,且. 【答案点睛】 本题考查线性规划问题,属于基础题 14、 【答案解析】 ,求得的通项,进而求得,得通项公式,利用等比数列求和即可. 【题目详解】 由题为等差数列,∴,∴,∴,∴,故答案为 【答案点睛】 本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题. 15、1 1 【答案解析】 根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解. 【题目详解】 复数z, ∵复数z是纯虚数,∴,解得a=1, ∴z=i,∴|z|=1, 故答案为:1,1. 【答案点睛】 此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则. 16、 【答案解析】 双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率. 【题目详解】 解:双曲线的左右焦点分别关于两条渐近线的对称点重合, 一条渐近线的斜率为1,即, ,, 故答案为:. 【答案点睛】 本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)().(2),.(3) 【答案解析】 (1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可; (2)由递推公式,得, 结合数列性质可得数列相

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开