温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
内蒙古
巴彦淖尔
临河
中高
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )
A.75 B.65 C.55 D.45
2.在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么( )
A. B. C. D.
4.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=( )
A.132 B.299 C.68 D.99
5.已知函数,若,且 ,则的取值范围为( )
A. B. C. D.
6.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
7.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )
A. B.
C. D.
8.已知命题:R,;命题 :R,,则下列命题中为真命题的是( )
A. B. C. D.
9.若直线与曲线相切,则( )
A.3 B. C.2 D.
10.设是虚数单位,若复数,则( )
A. B. C. D.
11.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
A. B. C. D.1
12.已知函数,则函数的图象大致为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.
14.已知a,b均为正数,且,的最小值为________.
15.已知,满足约束条件则的最小值为__________.
16.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.
(1)求数列的通项公式;
(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.
18.(12分)已知的面积为,且.
(1)求角的大小及长的最小值;
(2)设为的中点,且,的平分线交于点,求线段的长.
19.(12分)数列的前项和为,且.数列满足,其前项和为.
(1)求数列与的通项公式;
(2)设,求数列的前项和.
20.(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.
(1)求抛物线C的方程;
(2)设的中垂线在轴上的截距为,求的取值范围.
21.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.
22.(10分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.
(1)求抛物线C的方程;
(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
计算的和,然后除以,得到“5阶幻方”的幻和.
【题目详解】
依题意“5阶幻方”的幻和为,故选B.
【答案点睛】
本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.
2、D
【答案解析】
将复数化简得,,即可得到对应的点为,即可得出结果.
【题目详解】
,对应的点位于第四象限.
故选:.
【答案点睛】
本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.
3、D
【答案解析】
由得,分别算出和的值,从而得到的值.
【题目详解】
∵,
∴,
∴,
当时,,∴,
当时,,∴,
∴,
故选:D.
【答案点睛】
本小题主要考查对数运算,属于基础题.
4、B
【答案解析】
由为定值,可得,则是以3为周期的数列,求出,即求.
【题目详解】
对任意的,均有为定值,
,
故,
是以3为周期的数列,
故,
.
故选:.
【答案点睛】
本题考查周期数列求和,属于中档题.
5、A
【答案解析】
分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.
详解:作出函数的图象,如图所示,若,且,
则当时,得,即,
则满足,
则,即,则,
设,则,
当,解得,当,解得,
当时,函数取得最小值,
当时,;
当时,,
所以,即的取值范围是,故选A.
点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.
6、C
【答案解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【题目详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
【答案点睛】
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
7、C
【答案解析】
在等比数列中,由即可表示之间的关系.
【题目详解】
由题可知,等比数列中,且公比为2,故
故选:C
【答案点睛】
本题考查等比数列求和公式的应用,属于基础题.
8、B
【答案解析】
根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.
【题目详解】
对命题:
可知,
所以R,
故命题为假命题
命题 :
取,可知
所以R,
故命题为真命题
所以为真命题
故选:B
【答案点睛】
本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.
9、A
【答案解析】
设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.
【题目详解】
设切点为,
∵,∴
由①得,
代入②得,
则,,
故选A.
【答案点睛】
该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.
10、A
【答案解析】
结合复数的除法运算和模长公式求解即可
【题目详解】
∵复数,∴,,则,
故选:A.
【答案点睛】
本题考查复数的除法、模长、平方运算,属于基础题
11、C
【答案解析】
试题分析:设,由题意,显然时不符合题意,故,则
,可得:
,当且仅当时取等号,故选C.
考点:1.抛物线的简单几何性质;2.均值不等式.
【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.
12、A
【答案解析】
用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.
【题目详解】
设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.
故选:A
【答案点睛】
本题考查了函数图像的性质,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.
【题目详解】
由等比数列的性质可得,,
由于与的等差中项为,则,则,,
,,,
因此,.
故答案为:.
【答案点睛】
本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.
14、
【答案解析】
本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.
【题目详解】
因为,
所以,
当且仅当,即、时取等号,
故答案为:.
【答案点睛】
本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.
15、
【答案解析】
画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.
【题目详解】
画出可行域如下图所示,由图可知:
可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.
故答案为:
【答案点睛】
本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.
16、①③④
【答案解析】
对于①中,当点与点重合,与点重合时,可判断①正确;当点点与点重合,与直线所成的角最小为,可判定②不正确;根据平面将四面体可分成两个底面均为平面,高之和为的棱锥,可判定③正确;四面体在上下两个底面和在四个侧面上的投影,均为定值,可判定④正确.
【题目详解】
对于①中,当点与点重合,与点重合时,,所以①正确;
对于②中,当点点与点重合,与直线所成的角最小,此时两异面直线的夹角为,所以②不正确;
对于③中,设平面两条对角线交点为,可得平面,
平面将四面体可分成两个底面均为平面,高之和为的棱锥,
所以四面体的体积一定是定值,所以③正确;
对于④中,四面体在上下两个底面上的投影是对角线互相垂直且对角线长度均为1的四边形,其面积为定义,
四面体在四个侧面上的投影,均为上底为,下底和高均为1的梯形,其面积为定值,
故四面体在该正方体六个面上的正投影的面积的和为定值,所以④正确.
故答案为:①③④.
【答案点睛】
本题主要考查了以空间几何体的结构特征为载体的谜题的真假判定及应用,其中解答中涉及到棱柱的集合特征,异面直线的关系和椎体的体积,以及投影的综合应用,着重考查了推理与论证能力,属于中档试题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)4
【答案解析】
(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.
(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.
【题目详解】
解:任意都有,
数列是等差数列,
,
又是与的等比中项,,设数列的公差为,且,
则,解得,
,
;
由题意可知 ,
①,
②,
①﹣②得:,
,
,
由得,,
,
,
满足条件的最小的正整数的值为.
【答案点睛】
本题考查等差数列的通项公式和前项和公式及错位相减法求和. (1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个量,一般可设出和,利用等差数列的通项公式和前项和公式