温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
四川省
三台县
中学
月份
第一次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )
A. B. C. D.
2.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:
①若,,,则;
②若,,,则;
③若,,,则;
④若,,,,则.其中正确的是( )
A.①② B.②③ C.②④ D.③④
3.若复数(是虚数单位),则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知三棱柱( )
A. B. C. D.
5.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )
A. B.
C. D.
6.设实数、满足约束条件,则的最小值为( )
A.2 B.24 C.16 D.14
7.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )
A. B. C.8 D.6
8.已知函数是定义在上的偶函数,当时,,则,,的大小关系为( )
A. B. C. D.
9.函数的大致图象是( )
A. B.
C. D.
10.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )
A. B. C. D.
11.已知某几何体的三视图如图所示,则该几何体的体积是( )
A. B.64 C. D.32
12.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列的前项和为,且成等差数列,,数列的前项和为,则满足的最小正整数的值为______________.
14.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二 人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.
15.的展开式中,常数项为______;系数最大的项是______.
16.已知是等比数列,且,,则__________,的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.
(1)若,求的值;
(2)求的最大值.
18.(12分)已知函数,.
(1)若时,解不等式;
(2)若关于的不等式在上有解,求实数的取值范围.
19.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.
20.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;
设直线l与曲线C相交与M,N两点,当,求的值.
21.(12分)已知函数,其中.
(1)①求函数的单调区间;
②若满足,且.求证: .
(2)函数.若对任意,都有,求的最大值.
22.(10分)已知函数.
(1)求不等式的解集;
(2)若关于的不等式在上恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;
【题目详解】
解:设,,由,得,
∵,解得或,∴,.
又由,得,∴或,∴,
∵,
∴,
又∵,
∴代入解得.
故选:D
【答案点睛】
本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.
2、C
【答案解析】
根据线面平行或垂直的有关定理逐一判断即可.
【题目详解】
解:①:、也可能相交或异面,故①错
②:因为,,所以或,
因为,所以,故②对
③:或,故③错
④:如图
因为,,在内过点作直线的垂线,
则直线,
又因为,设经过和相交的平面与交于直线,则
又,所以
因为,,
所以,所以,故④对.
故选:C
【答案点睛】
考查线面平行或垂直的判断,基础题.
3、A
【答案解析】
将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.
【题目详解】
解:,所以所对应的点为在第一象限.
故选:A.
【答案点睛】
本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.
4、C
【答案解析】
因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=
5、D
【答案解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.
【题目详解】
由条件可得
函数关于直线对称;
在,上单调递增,且在时使得;
又
,,所以选项成立;
,比离对称轴远,
可得,选项成立;
,,可知比离对称轴远
,选项成立;
,符号不定,,无法比较大小,
不一定成立.
故选:.
【答案点睛】
本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.
6、D
【答案解析】
做出满足条件的可行域,根据图形即可求解.
【题目详解】
做出满足的可行域,如下图阴影部分,
根据图象,当目标函数过点时,取得最小值,
由,解得,即,
所以的最小值为.
故选:D.
【答案点睛】
本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.
7、C
【答案解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.
【题目详解】
设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,
则,,设
由椭圆的定义以及双曲线的定义可得:
,
则
当且仅当时,取等号.
故选:C.
【答案点睛】
本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.
8、C
【答案解析】
根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.
【题目详解】
依题意得,,
当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,
,即,
故选:C.
【答案点睛】
本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.
9、A
【答案解析】
用排除B,C;用排除;可得正确答案.
【题目详解】
解:当时,,,
所以,故可排除B,C;
当时,,故可排除D.
故选:A.
【答案点睛】
本题考查了函数图象,属基础题.
10、B
【答案解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.
【题目详解】
如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.
故选:B
【答案点睛】
此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.
11、A
【答案解析】
根据三视图,还原空间几何体,即可得该几何体的体积.
【题目详解】
由该几何体的三视图,还原空间几何体如下图所示:
可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,
故.
故选:A
【答案点睛】
本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.
12、D
【答案解析】
根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.
【题目详解】
由的图象可知,在上为增函数,
且在上存在正数,使得在上为增函数,
在为减函数,
故在有两个不同的零点,且在这两个零点的附近,有变化,
故排除A,B.
由在上为增函数可得在上恒成立,故排除C.
故选:D.
【答案点睛】
本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
本题先根据公式初步找到数列的通项公式,然后根据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前项和,再代入不等式进行计算可得最小正整数的值.
【题目详解】
由题意,当时,.
当时,.
则,.
,,成等差数列,
,即,
解得.
.
,.
.
.
,.
即,
,即,
,,
,即.
满足的最小正整数的值为1.
故答案为:1.
【答案点睛】
本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力.
14、
【答案解析】
由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.
15、
【答案解析】
求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.
【题目详解】
的展开式的通项为,
令,得,所以,展开式中的常数项为;
令,令,即,
解得,,,因此,展开式中系数最大的项为.
故答案为:;.
【答案点睛】
本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.
16、5
【答案解析】
,即的最大值为
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (1);(2).
【答案解析】
(1) 由角的度数成等差数列,得.
又.
由正弦定理,得,即.
由余弦定理,得,即,解得.
(2) 由正弦定理,得
.
由,得.
所以当,即时,.
【方法点睛】
解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三角恒等变换;②统一成边进行判断,常用余弦定理、面积公式等.
18、(1)(2)
【答案解析】
(1)零点分段法,分,,讨论即可;
(2)当时,原问题可转化为:存在,使不等式成立,即.
【题目详解】
解:(1)若时,,
当时,原不等式可化为,解得,所以,
当时,原不等式可化为,解得,所以,
当时,原不等式可化为,解得,所以,
综上述:不等式的解集为;
(2)当时,由得,
即,
故得,
又由题意知:,
即,
故的范围为.
【答案点睛】
本题考查解绝对值不等式以及不等式能成