温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
宣威市
第十
中学
第六
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为( )
A.2 B. C. D.
2.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的( )
A.3 B.4 C.5 D.6
3.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为( )
A. B. C. D.
4.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )
A. B. C. D.
5.设复数满足,则( )
A. B. C. D.
6.设正项等比数列的前n项和为,若,,则公比( )
A. B.4 C. D.2
7.下列说法正确的是( )
A.“若,则”的否命题是“若,则”
B.“若,则”的逆命题为真命题
C.,使成立
D.“若,则”是真命题
8.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( )
A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月
9.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )
A. B. C. D.
10.已知且,函数,若,则( )
A.2 B. C. D.
11.已知直线与圆有公共点,则的最大值为( )
A.4 B. C. D.
12.在直角中,,,,若,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知全集为R,集合,则___________.
14. “”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)
15.已知等差数列的前n项和为,,,则=_______.
16.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(1)若,求函数的单调区间;
(2)若不等式恒成立,求实数的取值范围.
18.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
19.(12分)已知函数,.
(1)若不等式的解集为,求的值.
(2)若当时,,求的取值范围.
20.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).
已知小张该笔贷款年限为20年,月利率为0.004.
(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;
(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);
(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.
参考数据:.
21.(12分)如图,在平面四边形中,,,.
(1)求;
(2)求四边形面积的最大值.
22.(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.
【题目详解】
解:
,
得,
则向量在上的投影为.
故选:C.
【答案点睛】
本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.
2、B
【答案解析】
分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.
详解: 记执行第次循环时,的值记为有,则有;
记执行第次循环时,的值记为有,则有.
令,则有,故
,故选B.
点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).
3、B
【答案解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,
那么,利用的最小正周期为,从而求得结果.
【题目详解】
的最小正周期为,
那么(∈),
于是,
于是当时,最小值为,
故选B.
【答案点睛】
该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.
4、A
【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.
【题目详解】
对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、、都是假命题.
故选:A
【答案点睛】
本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.
5、D
【答案解析】
根据复数运算,即可容易求得结果.
【题目详解】
.
故选:D.
【答案点睛】
本题考查复数的四则运算,属基础题.
6、D
【答案解析】
由得,又,两式相除即可解出.
【题目详解】
解:由得,
又,
∴,∴,或,
又正项等比数列得,
∴,
故选:D.
【答案点睛】
本题主要考查等比数列的性质的应用,属于基础题.
7、D
【答案解析】
选项A,否命题为“若,则”,故A不正确.
选项B,逆命题为“若,则”,为假命题,故B不正确.
选项C,由题意知对,都有,故C不正确.
选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.
选D.
8、C
【答案解析】
根据图形,计算出,然后解不等式即可.
【题目详解】
解:,
点在直线上
,
令
因为横轴1代表2019年8月,所以横轴13代表2020年8月,
故选:C
【答案点睛】
考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.
9、C
【答案解析】
由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.
【题目详解】
由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,
其底面面积,高,
故体积,
故选:.
【答案点睛】
本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.
10、C
【答案解析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.
【题目详解】
由题意知:
当时,且
由于,则可知:,
则,
∴,则,
则.
即.
故选:C.
【答案点睛】
本题考查分段函数的应用,由分段函数解析式求自变量.
11、C
【答案解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.
【题目详解】
因为表示圆,
所以,解得,
因为直线与圆有公共点,
所以圆心到直线的距离,
即 ,
解得,
此时,
因为,在递增,
所以的最大值.
故选:C
【答案点睛】
本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.
12、C
【答案解析】
在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.
【题目详解】
在直角中,,,,,
,
若,则
故选C.
【答案点睛】
本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先化简集合A,再求A∪B得解.
【题目详解】
由题得A={0,1},
所以A∪B={-1,0,1}.
故答案为{-1,0,1}
【答案点睛】
本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.
14、充分不必要
【答案解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.
【题目详解】
由,所以或,所以“”是“”的充分不必要条件.
故答案为:充分不必要
【答案点睛】
本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.
15、
【答案解析】
利用求出公差,结合等差数列的通项公式可求.
【题目详解】
设公差为,因为,所以,即.
所以.
故答案为:
【答案点睛】
本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.
16、
【答案解析】
求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率.
【题目详解】
由得,即
联立得
解得或,∴.
故答案为:.
【答案点睛】
本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)答案不唯一,具体见解析(2)
【答案解析】
(1)分类讨论,利用导数的正负,可得函数的单调区间.
(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.
【题目详解】
(1)
由得或
①当时,由,得.
由,得或
此时的单调递减区间为,单调递增区间为和.
②当时,由,得
由,得或
此时的单调递减区间为,单调递增区间为和
综上:当时,单调递减区间为,单调递增区间为和
当时,的单调递减区间为,单调递增区间为和.
(2)依题意,不等式恒成立
等价于在上恒成立,
可得,在上恒成立,
设,则
令,得,(舍)
当时,;当时,
当变化