分享
2023届四川成都实验中学高三第二次联考数学试卷(含解析).doc
下载文档

ID:13445

大小:2.12MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 四川成都 实验 中学 第二次 联考 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,,分别是三个内角,,的对边,,则( ) A. B. C. D. 2.若,则( ) A. B. C. D. 3.已知,,,则( ) A. B. C. D. 4.下列函数中,值域为R且为奇函数的是( ) A. B. C. D. 5.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是( ). A. B. C. D. 6.函数的最大值为,最小正周期为,则有序数对为( ) A. B. C. D. 7.已知实数,则下列说法正确的是( ) A. B. C. D. 8.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A. B. C. D. 9.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( ) A. B. C. D. 10.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为 A.1 B. C. D. 11.已知函数,,若成立,则的最小值是( ) A. B. C. D. 12.设,,则的值为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______. 14.已知,在方向上的投影为,则与的夹角为_________. 15.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种. (用数字作答) 16.平面区域的外接圆的方程是____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点. (1)求证:; (2)求直线与平面所成角的正弦值. 18.(12分)已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点. (1)求实数k的取值范围; (2)证明:f(x)的极大值不小于1. 19.(12分)已知函数,且. (1)若,求的最小值,并求此时的值; (2)若,求证:. 20.(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题: (1)求平面将四棱锥分成两部分的体积比; (2)求直线与平面所成角的正弦值. 21.(12分)如图,在三棱柱中,,,,为的中点,且. (1)求证:平面; (2)求锐二面角的余弦值. 22.(10分)在四棱锥的底面中,,,平面,是的中点,且 (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 原式由正弦定理化简得,由于,可求的值. 【题目详解】 解:由及正弦定理得. 因为,所以代入上式化简得. 由于,所以. 又,故. 故选:C. 【答案点睛】 本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题. 2、D 【答案解析】 直接利用二倍角余弦公式与弦化切即可得到结果. 【题目详解】 ∵, ∴, 故选D 【答案点睛】 本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 3、B 【答案解析】 利用指数函数和对数函数的单调性,将数据和做对比,即可判断. 【题目详解】 由于, , 故. 故选:B. 【答案点睛】 本题考查利用指数函数和对数函数的单调性比较大小,属基础题. 4、C 【答案解析】 依次判断函数的值域和奇偶性得到答案. 【题目详解】 A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除; C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除; 故选:. 【答案点睛】 本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用. 5、B 【答案解析】 求出在的解析式,作出函数图象,数形结合即可得到答案. 【题目详解】 当时,,, ,又,所以至少小于7,此时, 令,得,解得或,结合图象,故. 故选:B. 【答案点睛】 本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题. 6、B 【答案解析】 函数(为辅助角) ∴函数的最大值为,最小正周期为 故选B 7、C 【答案解析】 利用不等式性质可判断,利用对数函数和指数函数的单调性判断. 【题目详解】 解:对于实数, ,不成立 对于不成立. 对于.利用对数函数单调递增性质,即可得出. 对于指数函数单调递减性质,因此不成立. 故选:. 【答案点睛】 利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法. 8、B 【答案解析】 由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解. 【题目详解】 由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种 由古典概型,取的3个球的编号的中位数恰好为5的概率为: 故选:B 【答案点睛】 本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题. 9、A 【答案解析】 根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解. 【题目详解】 由得, 即,即, 因为,所以, 由余弦定理,所以, 由的面积公式得 故选:A 【答案点睛】 本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题. 10、C 【答案解析】 根据抛物线定义,可得,, 又,所以,所以, 设,则,则, 所以,所以直线的斜率.故选C. 11、A 【答案解析】 分析:设,则,把用表示,然后令,由导数求得的最小值. 详解:设,则,,, ∴,令, 则,,∴是上的增函数, 又,∴当时,,当时,, 即在上单调递减,在上单调递增,是极小值也是最小值, ,∴的最小值是. 故选A. 点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错. 12、D 【答案解析】 利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果. 【题目详解】 ,, ,, ,,, , 故选:D. 【答案点睛】 该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目. 二、填空题:本题共4小题,每小题5分,共20分。 13、60 【答案解析】 根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可. 【题目详解】 如图所示:设双曲线的半焦距为. 因为,,,所以由勾股定理,得. 所以. 因为是上一个靠近点的三等分点,是的中点,所以. 由双曲线的定义可知:,所以. 在中,由余弦定理可得 ,所以,整理可得. 所以,解得.所以. 则.则,得. 则的底边上的高为. 所以 . 故答案为:60 【答案点睛】 本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题. 14、 【答案解析】 由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【题目详解】 在方向上的投影为,即夹角为. 故答案为:. 【答案点睛】 本题考查求向量的夹角,掌握向量投影的定义是解题关键. 15. 【答案解析】 试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1. 考点:排列、组合及简单计数问题. 点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详. 16、 【答案解析】 作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、、的值,即可得出所求圆的方程. 【题目详解】 作出不等式组所表示的平面区域如下图所示: 由图可知,平面区域为,联立,解得,则点, 同理可得点、, 设的外接圆方程为, 由题意可得,解得,,, 因此,所求圆的方程为. 故答案为:. 【答案点睛】 本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析(2) 【答案解析】 (1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到. (2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解. 【题目详解】 (1)因为,故, 所以四边形为菱形, 而平面,故. 因为,故, 故,即四边形为正方形,故. (2)依题意,.在正方形中,, 故以为原点,所在直线分别为、、轴, 建立如图所示的空间直角坐标系; 如图所示: 不纺设, 则, 又因为,所以. 所以. 设平面的法向量为, 则, 即, 令,则.于是. 又因为, 设直线与平面所成角为, 则, 所以直线与平面所成角的正弦值为. 【答案点睛】 本题考查空间线面的位置关系、线面成角,还考查空间想象能力以及数形结合思想,属于中档题. 18、(1);(2)见解析 【答案解析】 (1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果 ; (2)由(1)知,在区间上存在极大值

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开