温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
哈密市
石油
高级中学
月份
第一次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )
A. B. C. D.
2.设递增的等比数列的前n项和为,已知,,则( )
A.9 B.27 C.81 D.
3.设命题:,,则为
A., B.,
C., D.,
4.已知全集,则集合的子集个数为( )
A. B. C. D.
5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )
A. B. C. D.8
6.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )
A. B. C. D.
7.已知集合,则全集则下列结论正确的是( )
A. B. C. D.
8.集合,,则=( )
A. B.
C. D.
9.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )
发芽所需天数
1
2
3
4
5
6
7
种子数
4
3
3
5
2
2
1
0
A.2 B.3 C.3.5 D.4
10.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )
A.等于4 B.大于4 C.小于4 D.不确定
11.设,点,,,,设对一切都有不等式 成立,则正整数的最小值为( )
A. B. C. D.
12.下列命题是真命题的是( )
A.若平面,,,满足,,则;
B.命题:,,则:,;
C.“命题为真”是“命题为真”的充分不必要条件;
D.命题“若,则”的逆否命题为:“若,则”.
二、填空题:本题共4小题,每小题5分,共20分。
13.展开式中的系数为_________.
14.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______
15.函数在的零点个数为_________.
16.函数在处的切线方程是____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的离心率为,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.
18.(12分)如图,在四棱锥中,平面平面,.
(Ⅰ)求证:平面;
(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.
19.(12分)在中,a,b,c分别是角A,B,C的对边,并且.
(1)已知_______________,计算的面积;
请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.
(2)求的最大值.
20.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.
(1)求动点的轨迹的方程;
(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.
21.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元)
产品销量 (件)
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.
22.(10分)如图,在三棱锥中,,,,平面平面,、分别为、中点.
(1)求证:;
(2)求二面角的大小.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.
【题目详解】
已知圆,
所以其标准方程为:,
所以圆心为.
因为双曲线,
所以其渐近线方程为,
又因为圆关于双曲线的一条渐近线对称,
则圆心在渐近线上,
所以.
所以.
故选:C
【答案点睛】
本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题.
2、A
【答案解析】
根据两个已知条件求出数列的公比和首项,即得的值.
【题目详解】
设等比数列的公比为q.
由,得,解得或.
因为.且数列递增,所以.
又,解得,
故.
故选:A
【答案点睛】
本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.
3、D
【答案解析】
直接利用全称命题的否定是特称命题写出结果即可.
【题目详解】
因为全称命题的否定是特称命题,所以,命题:,,则为:,.
故本题答案为D.
【答案点睛】
本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
4、C
【答案解析】
先求B.再求,求得则子集个数可求
【题目详解】
由题=, 则集合,故其子集个数为
故选C
【答案点睛】
此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题
5、A
【答案解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.
【题目详解】
由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,
直观图如图所示,.
故选:A.
【答案点睛】
本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.
6、A
【答案解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.
【题目详解】
五人分成四组,先选出两人组成一组,剩下的人各自成一组,
所有可能的分组共有种,
甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,
故甲和乙恰好在同一组的概率是.
故选:A.
【答案点睛】
本题考查组合的应用和概率的计算,属于基础题.
7、D
【答案解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.
【题目详解】
由,
则,故,
由知,,因此,
,,
,
故选:D
【答案点睛】
本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.
8、C
【答案解析】
先化简集合A,B,结合并集计算方法,求解,即可.
【题目详解】
解得集合,
所以,故选C.
【答案点睛】
本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.
9、C
【答案解析】
根据表中数据,即可容易求得中位数.
【题目详解】
由图表可知,种子发芽天数的中位数为,
故选:C.
【答案点睛】
本题考查中位数的计算,属基础题.
10、A
【答案解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可
【题目详解】
据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.
【答案点睛】
本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题
11、A
【答案解析】
先求得,再求得左边的范围,只需,利用单调性解得t的范围.
【题目详解】
由题意知sin,∴,
∴,随n的增大而增大,∴,
∴,即,又f(t)=在t上单增,f(2)= -1<0,f(3)=2>0,
∴正整数的最小值为3.
【答案点睛】
本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.
12、D
【答案解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.
【题目详解】
若平面,,,满足,,则可能相交,故A错误;
命题“:,”的否定为:,,故B错误;
为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;
命题“若,则”的逆否命题为:“若,则”,故D正确;
故选D
【答案点睛】
本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
变换,根据二项式定理计算得到答案.
【题目详解】
的展开式的通项为:,,
取和,计算得到系数为:.
故答案为:.
【答案点睛】
本题考查了二项式定理,意在考查学生的计算能力和应用能力.
14、
【答案解析】
计算正四面体的高,并计算该正四面体的体积,利用等体积法,可得结果.
【题目详解】
作平面,为的重心
如图
则,
所以
设正四面体内任意一点到四个面的距离之和为
则
故答案为:
【答案点睛】
本题考查类比推理的应用,还考查等体积法,考验理解能力以及计算能力,属基础题.
15、1
【答案解析】
本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.
【题目详解】
问题函数在的零点个数,可以转化为曲线交点个数问题.
在同一直角坐标系内,画出函数的图象,如下图所示:
由图象可知:当时,两个函数只有一个交点.
故答案为:1
【答案点睛】
本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.
16、
【答案解析】
求出和的值,利用点斜式可得出所求切线的方程.
【题目详解】
,则,,.
因此,函数在处的切线方程是,
即.
故答案为:.
【答案点睛】
本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ);(Ⅱ)详见解析.
【答案解析】
(Ⅰ)把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;
(Ⅱ)联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.
【题目详解】
(Ⅰ)由已知椭圆过点得,,
又,得,
所以,即椭圆方程为.
(Ⅱ)证明: 由,得,
由,得,
由韦达定理可得,,
设的中点为,得,即,
,
的中垂线方程为,即,
故得中垂线恒过点.
【答案点睛】
本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识