温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
黑龙江省
安达市
中高
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={y|y=,x>0},N={x|y=lg(2x-)},则M∩N为( )
A.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)
2.函数(其中,,)的图象如图,则此函数表达式为( )
A. B.
C. D.
3.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )
A. B. C. D.
4.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
5.某几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
6.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )
A. B. C. D.4
7.已知,且,则的值为( )
A. B. C. D.
8.是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )
A. B. C. D.
9.若复数(为虚数单位),则的共轭复数的模为( )
A. B.4 C.2 D.
10.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A. B. C. D.
11.在中,内角的平分线交边于点,,,,则的面积是( )
A. B. C. D.
12.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )
A. B. C.0 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如果函数(,且,)在区间上单调递减,那么的最大值为__________.
14.已知向量,且向量与的夹角为_______.
15.已知函数,若函数有个不同的零点,则的取值范围是___________.
16.如图,在矩形中,为边的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,.
(Ⅰ)讨论的单调性;
(Ⅱ)时,若,,求证:.
18.(12分)已知函数,.
(1)当时,求不等式的解集;
(2)若函数的图象与轴恰好围成一个直角三角形,求的值.
19.(12分)
(Ⅰ)证明: ;
(Ⅱ)证明:();
(Ⅲ)证明:.
20.(12分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.
(1)求证:平面;
(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.
21.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.
(1)求角A的值;
(2)若,设角,周长为y,求的最大值.
22.(10分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
,
,
∴.
故选.
2、B
【答案解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.
【题目详解】
解:由图象知,,则,
图中的点应对应正弦曲线中的点,
所以,解得,
故函数表达式为.
故选:B.
【答案点睛】
本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.
3、C
【答案解析】
作,;,由题意,由二倍角公式即得解.
【题目详解】
由题意,,准线:,
作,;,
设,
故,,
.
故选:C
【答案点睛】
本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
4、D
【答案解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:本题主要考查三视图及几何体体积的计算.
5、A
【答案解析】
利用已知条件画出几何体的直观图,然后求解几何体的体积.
【题目详解】
几何体的三视图的直观图如图所示,
则该几何体的体积为:.
故选:.
【答案点睛】
本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.
6、D
【答案解析】
如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.
【题目详解】
如图所示:过点作垂直准线于,交轴于,则,
设,,则,
当,即时等号成立.
故选:.
【答案点睛】
本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.
7、A
【答案解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.
【题目详解】
因为,所以,又,所以,
,所以.
故选:A.
【答案点睛】
本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.
8、D
【答案解析】
首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.
【题目详解】
如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,
当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,
、分别为、的中点,则必有,
,即为直角三角形.
对于等腰梯形,如图:
因为是等边三角形,、、分别为、、的中点,
必有,
所以点为等腰梯形的外接圆圆心,即点与点重合,如图
,,
所以四棱锥底面的高为,
.
故选:D.
【答案点睛】
本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.
9、D
【答案解析】
由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.
【题目详解】
,.
故选:D.
【答案点睛】
本题考查复数的运算,考查共轭复数与模的定义,属于基础题.
10、C
【答案解析】
由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.
11、B
【答案解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.
【题目详解】
为的角平分线,则.
,则,
,
在中,由正弦定理得,即,①
在中,由正弦定理得,即,②
①②得,解得,,
由余弦定理得,,
因此,的面积为.
故选:B.
【答案点睛】
本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.
12、C
【答案解析】
先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.
【题目详解】
记圆的圆心为,设,则,设,记,则
,令,
因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).
故选:C
【答案点睛】
此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、18
【答案解析】
根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.
【题目详解】
解:①当时, ,
在区间上单调递减,
则,即,
则.
②当时, ,
函数开口向上,对称轴为,
因为在区间上单调递减,
则,
因为,则,
整理得,
又因为,
则.所以
即,
所以
当且仅当时等号成立.
综上所述,的最大值为18.
故答案为:18
【答案点睛】
本题主要考查一次函数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.
14、1
【答案解析】
根据向量数量积的定义求解即可.
【题目详解】
解:∵向量,且向量与的夹角为,
∴||;
所以:•()2cos2﹣2=1,
故答案为:1.
【答案点睛】
本题主要考查平面向量的数量积的定义,属于基础题.
15、
【答案解析】
作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.
16、
【答案解析】
由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为
.
考点:旋转体的组合体.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2)证明见解析.
【答案解析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;
(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.
【题目详解】
(1),令,
则,令得,
当时,则在单调递减,
当时,则在单调递增,
所以,
当时,,即,则在上单调递增,
当时,,
易知当时,,
当时,,
由零点存在性定理知,,不妨设,使得,
当时,,即,
当时,,即,
当时,,即,
所以在和上单调递增,在单调递减;
(2)证明:构造函数,,
,,
整理得,
,
(当时等号成立),
所以在上单调递增,则,
所以在上单调递增,,
这里不妨设,欲证,
即证由(1)知时,在上单调递增,
则需证,
由已知有,
只需证,
即证,
由在上单调递增,且时,
有,
故成立,从而得证.
【答案点睛】
本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.
18、(1) (2)
【答案解析】
(1)当时,,
由可得,(
所以,解得,
所以不等式的解集为.
(2)由题可得,
因为函数的图象与轴恰好围成一个直角三角形,
所以,解得,
当时,,函数的图象与轴没有交点,不符合题意;
当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.
综上,可得.
19、 (Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析
【答案解析】
运用数学归纳法证明即可得到结果
化简,运用累加法得出结果
运用放缩法和累加法进行求证
【题目详解】
(Ⅰ)数学归纳法证明时,
①当时,成立;
②当时,假设成立,则时
所以时,成立
综上①②可知,时,