温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
开远
一中
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,则 ( )
A. B. C. D.
2.已知函数满足,且,则不等式的解集为( )
A. B. C. D.
3.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为( )
A. B. C. D.
4.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )
A. B. C. D.
5.已知复数满足:(为虚数单位),则( )
A. B. C. D.
6.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )
A.5 B. C.4 D.16
7.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )
A. B. C.6 D.与点O的位置有关
8.已知倾斜角为的直线与直线垂直,则( )
A. B. C. D.
9.如图,圆的半径为,,是圆上的定点,,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )
A. B. C. D.
10.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )
A. B. C. D.
11.已知,,若,则实数的值是( )
A.-1 B.7 C.1 D.1或7
12.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,则____________.
14.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.
15.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
16.在区间内任意取一个数,则恰好为非负数的概率是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)解不等式;
(2)记函数的最大值为,若,证明:.
18.(12分)已知函数.
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点证明.
19.(12分)已知多面体中,、均垂直于平面,,,,是的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
20.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为,求的值.
21.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
22.(10分)已知函数,且曲线在处的切线方程为.
(1)求的极值点与极值.
(2)当,时,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
利用诱导公式以及同角三角函数基本关系式化简求解即可.
【题目详解】
,
本题正确选项:
【答案点睛】
本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.
2、B
【答案解析】
构造函数,利用导数研究函数的单调性,即可得到结论.
【题目详解】
设,则函数的导数,,,即函数为减函数,,,则不等式等价为,
则不等式的解集为,即的解为,,由得或,解得或,
故不等式的解集为.故选:.
【答案点睛】
本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.
3、A
【答案解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.
【题目详解】
当为奇数时,,
则数列奇数项是以为首项,以为公差的等差数列,
当为偶数时,,
则数列中每个偶数项加是以为首项,以为公比的等比数列.
所以
.
故选:A
【答案点睛】
本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.
4、C
【答案解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.
【题目详解】
当时,则,,
所以,,显然当时,
,故,,若对于任意正整数不等式
恒成立,即对于任意正整数恒成立,即对于任
意正整数恒成立,设,,令,解得,
令,解得,考虑到,故有当时,单调递增,
当时,有单调递减,故数列的最大值为,
所以.
故选:C.
【答案点睛】
本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.
5、A
【答案解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.
【题目详解】
由,则,
所以.
故选:A
【答案点睛】
本题考查了复数的四则运算、共轭复数的概念,属于基础题.
6、C
【答案解析】
根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.
【题目详解】
中,,由正弦定理得,
又,
∴,又,∴,∴,又,
∴.∵,
∴,∵,∴由余弦定理可得,
∴,可得.
故选:C
【答案点睛】
本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.
7、B
【答案解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.
【题目详解】
如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,
正方体的体积为8,四棱锥的底面是边长为2的正方形,
顶点O在平面上,高为2,
所以四棱锥的体积为,
所以该几何体的体积为.
故选:B.
【答案点睛】
本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.
8、D
【答案解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.
【题目详解】
解:因为直线与直线垂直,所以,.
又为直线倾斜角,解得.
故选:D.
【答案点睛】
本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.
9、B
【答案解析】
根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.
【题目详解】
由题意,当时,P与A重合,则与B重合,
所以,故排除C,D选项;
当时,,由图象可知选B.
故选:B
【答案点睛】
本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.
10、A
【答案解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.
【题目详解】
椭圆的方程,双曲线的方程为,
则椭圆离心率,双曲线的离心率,
由和的离心率之积为,
即,
解得,
所以渐近线方程为,
化简可得,
故选:A.
【答案点睛】
本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.
11、C
【答案解析】
根据平面向量数量积的坐标运算,化简即可求得的值.
【题目详解】
由平面向量数量积的坐标运算,代入化简可得
.
∴解得.
故选:C.
【答案点睛】
本题考查了平面向量数量积的坐标运算,属于基础题.
12、B
【答案解析】
先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.
【题目详解】
因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,
则,由几何概型的概率计算公式知,
所以.
故选:B.
【答案点睛】
本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据并集的定义计算即可.
【题目详解】
由集合的并集,知.
故答案为:
【答案点睛】
本题考查集合的并集运算,属于容易题.
14、1
【答案解析】
根据正态分布对称性,求得质量低于的袋数的估计值.
【题目详解】
由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.
故答案为:
【答案点睛】
本小题主要考查正态分布对称性的应用,属于基础题.
15、130. 15.
【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.
【题目详解】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
【答案点睛】
本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考