分享
2023届内蒙赤峰新城红旗中学高三第三次测评数学试卷(含解析).doc
下载文档

ID:13434

大小:2.16MB

页数:24页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 内蒙 赤峰 新城 红旗 中学 第三次 测评 数学试卷 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( ) A.至少有一个样本点落在回归直线上 B.若所有样本点都在回归直线上,则变量同的相关系数为1 C.对所有的解释变量(),的值一定与有误差 D.若回归直线的斜率,则变量x与y正相关 2.设i为数单位,为z的共轭复数,若,则( ) A. B. C. D. 3.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( ) A. B. C. D. 4.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( ) A. B. C. D. 5.函数的部分图象如图所示,则的单调递增区间为( ) A. B. C. D. 6.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则( ) A., B., C., D., 7.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是( ) A. B. C. D. 8.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( ) A. B. C. D. 9.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( ) A.-1 B.1 C. D. 10.函数在上的图象大致为( ) A. B. C. D. 11.已知数列为等差数列,为其前项和,,则( ) A.7 B.14 C.28 D.84 12.下列说法正确的是( ) A.命题“,”的否定形式是“,” B.若平面,,,满足,则 C.随机变量服从正态分布(),若,则 D.设是实数,“”是“”的充分不必要条件 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中,的系数为____________. 14.已知数列满足,,若,则数列的前n项和______. 15.已知,,且,则的最小值是______. 16.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数,设为的导数,. (1)求,; (2)猜想的表达式,并证明你的结论. 18.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为. (1)求直线l的普通方程与曲线C的直角坐标方程; (2)设点,直线l与曲线C交于不同的两点A、B,求的值. 19.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点, (1)证明:直线的斜率是-1; (2)若,,成等比数列,求直线的方程. 20.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装. 其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图. 表1:一级滤芯更换频数分布表 一级滤芯更换的个数 8 9 频数 60 40 图2:二级滤芯更换频数条形图 以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率. (1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率; (2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望; (3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值. 21.(12分)如图,矩形和梯形所在的平面互相垂直,,,. (1)若为的中点,求证:平面; (2)若,求四棱锥的体积. 22.(10分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表: 日期 1 2 3 4 5 6 7 全国累计报告确诊病例数量(万人) 1.4 1.7 2.0 2.4 2.8 3.1 3.5 (1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系? (2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数. 参考数据:,,,. 参考公式:相关系数 回归方程中斜率和截距的最小二乘估计公式分别为: ,. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 对每一个选项逐一分析判断得解. 【题目详解】 回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误; 所有样本点都在回归直线上,则变量间的相关系数为,故B错误; 若所有的样本点都在回归直线上,则的值与相等,故C错误; 相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确. 故选D. 【答案点睛】 本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力. 2、A 【答案解析】 由复数的除法求出,然后计算. 【题目详解】 , ∴. 故选:A. 【答案点睛】 本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键. 3、B 【答案解析】 设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值. 【题目详解】 设棱长为1,,, 由题意得:,, , 又 即异面直线与所成角的余弦值为: 本题正确选项: 【答案点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题. 4、C 【答案解析】 求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程 在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得. 【题目详解】 依题意,, 令,解得,,故当时,, 当,,且, 故方程在上有两个不同的实数根, 故, 解得. 故选:C. 【答案点睛】 本题考查确定函数零点或方程根个数.其方法: (1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解; (2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数. 5、D 【答案解析】 由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可. 【题目详解】 由图象知, 所以,, 又图象过点, 所以, 故可取, 所以 令, 解得 所以函数的单调递增区间为 故选:. 【答案点睛】 本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题. 6、A 【答案解析】 设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项. 【题目详解】 如图所示,利用排除法,取与重合时的情况. 不妨设,延长到,使得. ,,,,则, 由余弦定理得, ,, 又,, 当平面平面时,,,排除B、D选项; 因为,,此时,, 当平面平面时,,,排除C选项. 故选:A. 【答案点睛】 本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题. 7、C 【答案解析】 先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围. 【题目详解】 由的图象知函数在区间单调递增,而,故由可知.故, 又有,综上得的取值范围是. 故选:C 【答案点睛】 本题考查了函数单调性和不等式的基础知识,属于中档题. 8、C 【答案解析】 由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积. 【题目详解】 由三视图可知, 几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形, 侧棱长为,如图: 由底面边长可知,底面三角形的顶角为, 由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心, 所以, 该几何体外接球的表面积为:. 故选:C 【答案点睛】 本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题. 9、D 【答案解析】 根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果. 【题目详解】 如图所示: 因为是△的中位线, 所以到的距离等于△的边上高的一半, 所以, 由此可得, 当且仅当时,即为的中点时,等号成立, 所以, 由平行四边形法则可得,, 将以上两式相加可得, 所以, 又已知, 根据平面向量基本定理可得, 从而. 故选:D 【答案点睛】 本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题. 10、C 【答案解析】 根据函数的奇偶性及函数在时的符号,即可求解. 【题目详解】 由可知函数为奇函数. 所以函数图象关于原点对称,排除选项A,B; 当时,, ,排除选项D, 故选:C. 【答案点睛】 本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开