分享
食品营养学-山东师范大学教材3.ppt
下载文档

ID:134312

大小:882KB

页数:73页

格式:PPT

时间:2023-02-27

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
食品 营养学 山东师范大学 教材
第三章第三章 营养与能量平衡营养与能量平衡 第一节第一节 能量与能量单位能量与能量单位 第二节第二节 能值及其测定能值及其测定 第三节第三节 影响人体能量需要的因素影响人体能量需要的因素 第四节第四节 能量在食品加工中的变化能量在食品加工中的变化 第五节第五节 能量的供给与食物来源能量的供给与食物来源 第一节第一节 能量与能量单位能量与能量单位 一、能量的作用及意义一、能量的作用及意义 二、能量单位二、能量单位 一、能量的作用及意义 能量是人类赖以生存的基础。人们为了维持生命、生长、发育、繁殖后代和从事各种活动,每天必须从外界取得一定物质和能量。食物能量最终来源是太阳能,这是由植物利用太阳能,通过光合作用,把CO2、水和其它无机物转变成有机物,供生命之所需,并将生命过程的化学能直接或间接保持在ATP的高能磷酸键中。除碳水化合物、脂肪和蛋白质是三大能量营养素外,酒中的乙醇也能提供较高的能量。ATP的重要性的重要性 生物体内能量的储存和利用都是以ATP为中心。在体外pH7.0,25条件下每摩尔ATP水解为ADP和Pi时释放的能量为30.5kj(7.3kcal)。人体内ATP含量虽然不多,但每日经ATP/ADP相互转变的量相当可观。ATP在生物体内可以参与肌肉收缩转变成机械能,参与物质主动转运转变成渗透能,参与合成代谢转变成化学能,维持生物电转变成电能,维持体温转变成热能等。能量单位 能量(energy)的单位,现国际上通用焦耳(joule,J),营养学上,使用最多的是其1000倍的单位,即千焦耳(Kilojoules,KJ)。传统上常用千卡(kilocalories,kcal)。其换算关系如下:1kcal4.184kJ;1KJ=0.239kcal。所谓1kcal即是指1kg的水从15升高到16,即温度升高1 所吸收的能量。第二节第二节 能值及其测定能值及其测定 一、食物能值与生理能值一、食物能值与生理能值 二、能值的测定二、能值的测定 一、食物能值与生理能值 食物能值即食物彻底燃烧时测定的能值。即“物理燃烧值”,或称“总能值”。生理能值即机体可利用的能值,在体内,碳水化合物和脂肪氧化的最终产物与体外燃烧时相同,因考虑到机体对它们的消化、吸收情况(如纤维素即不能被人类消化),故二者的生理能值与体外燃烧时可稍有不同。生热营养素产生能量 1g碳水化合物产生能量为16.7kJ(4.0kcal)1g脂肪产生能量为36.7kJ(9.0kcal)1g蛋白质产生能量为16.7kJ(4.0kcal)1g乙醇产生能量为29.3kJ(7.0kcal)蛋白质在体内的氧化并不完全,氨基酸等中的氮并未氧化成氮的氧化物或硝酸(这些物质对机体有害),而以尚有部分能量的有机物如尿素、尿酸、肌酐等由尿排出。这些含氮有机物的能量均可在体外燃烧时测得。此外,再考虑到消化率的影响,便可得到机体由蛋白质氧化而来的可利用的能值。不同食品中碳水化合物、脂肪和蛋白质的含量各异,若需了解某种食品所含能值,可利用食物成分表或仔细分析其样品的组成进行计算。二、能值的测定二、能值的测定 1。食物能值测定 食物能值通常用氧弹量热计,或称弹式热量计(bomb calorimeter)进行测定,这是一个弹式密闭的高压容器,内有一白金坩蜗,其中放入待测的食物试样,并充以高压氧,使其置于已知温度和体积的水浴中。用电流引燃,食物试样便在氧气中完全燃烧,所产生的热使水和量热计的温度升高,由此计算出该食物试样产生的能(热)量。2人体能量消耗的测定人体能量消耗的测定 人体能量的消耗实际上就是指人体对能量的需要。较常用的测定方法有以下两种。(1)直接测定法 这是直接收集并测量人体所放散的全部热能的方法。为此,让受试者进入一特殊装备的小室。该室四周被水管包围并与外界隔热。机体所散发的热量可被水吸收,并通过液体和金属的传导进行测定,此法可对受试者在小室内进行不同强度的各种类型的活动所产生和放散的热能予以测定。此法原理简单,类似于氧弹热量计,但实际建造,投资很大,且不适于复杂的现场测定,现已基本不用。(2)间接测定法间接测定法 此法广泛应用于人体能量的消耗。主要根据其耗氧量的多少来推算所消耗的能量。关于人体耗氧量的测定可通过收集所呼出的气量(如用比Douglas袋等),来分析其中氧和二氧化碳的容积百分比。由于空气中含氧量一定,且可测定,故将吸入空气中的含氧量减去呼出气体中的含氧量,即可计算出一定时间内机体的耗氧量。还可利用自记呼吸量测定器进行测定。如用KofranyiMichaelis仪测量耗氧率,这是用一简单的气箱或气袋收集呼出的气体,在除去所产生的二氧化碳后再回到原测定器中,由所记下降的体积和时间得出耗氧速度,由耗氧量计算所消耗的能量。大气空气成分比较恒定,O2为20.94%,C02为0.03%,N2为79.03%,其它一些微量气体可略不计;同时,N2在人体气体代谢过程中,既不能吸收利用,也不能从体内增加而经肺排出。因而有可能采用开放式间接测热法以测定人体的能量消耗。测定时人体吸入外界空气,只收集呼出气进行分析,分析所得的O2与CO2的百分比与空气比较,结合一定时间呼出的气体量,即可计算一定时间内的氧耗量和CO2排出量。食物在热量计中或在人体内氧化所消耗的氧量直接与以热释放的能量有关,葡萄糖不管如何氧化,其所需的氧量和所产生的能量基本一样。至于蛋白质由于其结构和易变性等它的氧化不能用简单方程式表示。最近有双标水测量中能量消耗,用氢和氧的同位素标记,精密度准确度均高但对材料、技术设备要求较高,费用昂贵,因此尚有局限性。食物在体内分解释放能量时,必须消耗一定量的氧,产生一定量的CO2;CO2的产生量与O2的消耗量之间的比称为呼吸商。呼吸商随着体内消耗的能源物质不同而异。糖氧化时的呼吸商约为1,以葡萄糖为例:C6H12O6+6O26C02+6H20 呼吸商=6mol CO2/6mol O2=622.4/622.4=1.0 脂肪氧化时呼吸商约为0.7,以(三)软脂酸甘油酯为例:2C51H98O6+145O2102C02+98H20 呼吸商=102mol CO2/145mol O2=10222.4/14522.4=0.7 蛋白质的代谢过程比较复杂,它在体内未经彻底氧化,仍有一部分O及C与N结合随尿排出,即是尿素等,这部分物质在体外还可继续氧化放出能量。100g蛋白质在体内氧化大约需要138.18g的O2,产生152.17g的CO2,其呼吸商为:呼吸商=(152.17/4422.4)/(138.18/3222.4)=77.47l CO2/96.73L O2=0.8 进食混合膳食时,可先从尿氮计算蛋白质的消耗量。1g尿氮相当于消耗6.25g蛋白质,同时消耗6.04LO2,产生4.84LCO2和释放110kJ的能量。从总的氧耗量及CO2产量中减去蛋白质氧化所消耗的氧量和CO2产量,则可得非蛋白呼吸商。按照下式,可以计算在不同的非蛋白呼吸商情况下,每消耗1LCO2所能放出的能量。这叫做每升氧的能当量。每升氧的能当量(kJ)=15.962+5.155r R为非蛋白呼吸商。因此,测定出尿氮和氧耗量后,即可计算热能消耗量。如果不测定尿氧,用总呼吸商计算所得的热能消耗量与非蛋白呼吸商计算所得者相差只是1.1%,所以现在大多直接用总呼吸商进行计算。一种新的食物能量计算方法在一种新的食物能量计算方法在FAO/WHO会议上提出会议上提出 2002年12月FAO/WHO/UNU召集了联合咨询专家委员会和各国相关专家,在罗马组织进行了“食物能量分析方法和表达模式技术工作会议”(Technical Workshop on Methods of Analysis and Modes of Expression of the Energy Content of Foods)。会议着重讨论了由Livesey 等提出的一套新的食物能量换算系统(NME系统),以及在全球范围内统一应用的可能性问题。NME系统提出的背景系统提出的背景 食物营养标签能量值的计算、标识和每日摄取量基准的推荐,十分重要。在发达国家食物能量的评价早已引起足够的重视,也成为世界各国和联合国食品技术标准和规范不可缺少的内容。但是,随着科学家们对蛋白质、碳水化合物(CHO),尤其是膳食纤维、糖醇和抗性淀粉在机体中消化吸收率和能量利用率认识的更新和加深,新型低能量食品和糖、脂肪替代添加剂的开发应用所带来的能量系数空白,使现行的Atwater食物能量评价系统的科学性和权威性受到了质疑和挑战。事实上,目前世界各国在能量计算方面是比较混乱的,对蛋白质、碳水化合物、脂肪和乙醇使用ME系统求导的能量系数来换算能量值,而用NME系数来换算新型食物成分,如糖醇和葡聚糖的能量(FAO/WHO无推荐数据,Codex Alimentarius 中也无规定)。不过目前完全采用NME系统能量系数的国家极少。这种现象充分提示1985年FAO/WHO认定或提供的能量系数并不能满足各个领域的需要,因此不少营养学家们,按他们对人体能量代谢的理解及一些对食物能量的实际检测结果来求导或制订能量系数,用于“食物营养标签”和食物成分表。这样一来造成各国食物成分表、食品标签上标注的食物能量值没有可比性,给应用者如研究人员、医生、营养师和消费者以及食品生产和国际贸易带来了不便和困惑。目前,包括目前,包括NME系统在内,全球至少在使系统在内,全球至少在使用用4种食物能量评价系统和系数种食物能量评价系统和系数 (1)传统ME系统 MEATW=17 kJ/g 蛋白质+37 kJ/g 脂肪+17 kJ/g 总的碳水化合物.即Atwater 食物能量换算系数和公式,FAO/WHO1985年推荐,1993仍然确认继续使用。(2)食物特异性能量系数系统)食物特异性能量系数系统 这个系统对不同的类别的食物原料(如谷类、蔬菜类)、加工食品(如快餐)采用特定的能量系数。如美国食物成分表就采用这种能量评价系统,例如蛋白质的能量系数,在蛋类为4.36 kcal/g、乳及乳制品4.27 kcal/g、大豆和大豆面3.47 kcal/g、多种食物的混合膳食 1.83 kcal/g;蔬菜及制品蛋白质的能量换算系数在2.03.7kcal/g之间。美国的有关专家认为这个系统比Atwater系统更精确,但应用和计算较繁琐,与其它国家数据无可比性。(3)实验测定或总能量为基础的能量评价)实验测定或总能量为基础的能量评价系统(系统(empirical or gross energy-based system)这个系统的系数是建立在每种食物实验检测的基础上,并且每次要测定被检食物的燃烧热作为一个必要的参照指标。这个系统试图摈弃Atwater系统的机械性,其推行者们认为对所有食物中同一种营养素采用一成不变的系数是不科学的,食物各成分之间的能量吸收利用存在内在联系和相互影响。(4)修订)修订/改进的改进的ME系统能量系数和公式系统能量系数和公式 MEMOD=16.7 kJ/g 蛋白质+37.4 kJ/g 脂肪+15.7 kJ/g 可利用的碳水化合物+8 kJ/g 不可利用的碳水化合物.这个公式中采用了近年来对碳水化合物分类及消化吸收率和大肠发酵特点的研究认识成果,将碳水化合物划分为可利用和不可利用(不在小肠内消化吸收,但在大肠内发酵,产生的短链脂肪酸可给机体提供能量)两部分,分别采用约4kcal/g(15.7 kJ/g)和1.9kcal/g(8 kJ/g)的能量系数。(5)Livesey 提出的提出的NME系统系统(如对一般膳食的通用能量系数和计算式)NME=13.3 kJ/g 蛋白质+36.6 kJ/g 脂肪+15.7 kJ/g 可利用的碳水化合物+6.2 kJ/g 不可利用的碳水化合物.FAO/WHO确定的Atwater能量换算系数并没有限制住科学界对食物能量的继续思考,他们也不满足于能量系数经验性求导或矫正的方式,而是从根本上对用食物代谢能(Metabolisable energy,ME)理论产生了怀疑。NME食物能量评价系统食物能量评价系统 上世纪90年

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开