温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南
腾冲
第八
中学
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,若,则与夹角的余弦值为( )
A. B. C. D.
2.已知复数,为的共轭复数,则( )
A. B. C. D.
3.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为
A. B. C. D.
4.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )
A. B.
C. D.
5.已知集合,,,则( )
A. B. C. D.
6.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( )
A. B. C. D.
7.若函数有且仅有一个零点,则实数的值为( )
A. B. C. D.
8.已知,则( )
A. B. C. D.2
9.已知向量,,则与共线的单位向量为( )
A. B.
C.或 D.或
10.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l ⊥m,l ⊥n,则
( )
A.α∥β且∥α B.α⊥β且⊥β
C.α与β相交,且交线垂直于 D.α与β相交,且交线平行于
11.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是( )
A. B. C. D.
12.若的内角满足,则的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中,的系数是__________. (用数字填写答案)
14.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.
15.已知非零向量,满足,且,则与的夹角为____________.
16.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4-4:坐标系与参数方程
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
18.(12分)已知函数,
(1)证明:在区间单调递减;
(2)证明:对任意的有.
19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.
(1)求的长;
(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
20.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.
(1)证明:面面;
(2)当为中点时,求二面角余弦值.
21.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.
(1)证明:数列是等差数列;
(2)求数列的通项公式;
(3)若,当时,的前项和为,求证:对任意,都有.
22.(10分)已知,,,,证明:
(1);
(2).
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.
【题目详解】
依题意,, 而, 即, 解得, 则.
故选:B.
【答案点睛】
本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.
2、C
【答案解析】
求出,直接由复数的代数形式的乘除运算化简复数.
【题目详解】
.
故选:C
【答案点睛】
本题考查复数的代数形式的四则运算,共轭复数,属于基础题.
3、D
【答案解析】
由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.
【题目详解】
解:如图,
∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,
∴
设正方体的棱长为,则,
∴.
取,连接,则共面,
在中,设到的距离为,
设到平面的距离为,
.
故选D.
【答案点睛】
本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.
4、C
【答案解析】
在等比数列中,由即可表示之间的关系.
【题目详解】
由题可知,等比数列中,且公比为2,故
故选:C
【答案点睛】
本题考查等比数列求和公式的应用,属于基础题.
5、D
【答案解析】
根据集合的基本运算即可求解.
【题目详解】
解:,,,
则
故选:D.
【答案点睛】
本题主要考查集合的基本运算,属于基础题.
6、C
【答案解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.
【题目详解】
由题化简得,,
作出的图象,
又由易知.
故选:C.
【答案点睛】
本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.
7、D
【答案解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.
【题目详解】
,
则,
,
,所以,函数的图象关于直线对称.
若函数的零点不为,则该函数的零点必成对出现,不合题意.
所以,,即,解得或.
①当时,令,得,作出函数与函数的图象如下图所示:
此时,函数与函数的图象有三个交点,不合乎题意;
②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.
综上所述,.
故选:D.
【答案点睛】
本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.
8、B
【答案解析】
结合求得的值,由此化简所求表达式,求得表达式的值.
【题目详解】
由,以及,解得.
.
故选:B
【答案点睛】
本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.
9、D
【答案解析】
根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.
【题目详解】
因为,,则,
所以,
设与共线的单位向量为,
则,
解得 或
所以与共线的单位向量为或.
故选:D.
【答案点睛】
本题考查向量的坐标运算以及共线定理和单位向量的定义.
10、D
【答案解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.
考点:平面与平面的位置关系,平面的基本性质及其推论.
11、A
【答案解析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.
【题目详解】
当时,,
当时,,
当时,,
当时,,
若有且仅有3个零点,
则等价为有且仅有3个根,
即与有三个不同的交点,
作出函数和的图象如图,
当a=1时,与有无数多个交点,
当直线经过点时,即,时,与有两个交点,
当直线经过点时,即时,与有三个交点,
要使与有三个不同的交点,则直线处在过和之间,
即,
故选:A.
【答案点睛】
利用函数零点的情况求参数值或取值范围的方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
12、A
【答案解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.
【题目详解】
由题意,角满足,则,
又由角A是三角形的内角,所以,所以,
因为,
所以.
故选:A.
【答案点睛】
本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据组合的知识,结合组合数的公式,可得结果.
【题目详解】
由题可知:项来源可以是:(1)取1个,4个
(2)取2个,3个
的系数为:
故答案为:
【答案点睛】
本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.
14、
【答案解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.
【题目详解】
由三视图还原原几何体如下图所示:
该几何体为四棱锥,底面为直角梯形,,,侧棱底面,
则该几何体的体积为,
,,
因此,该棱锥的最长棱的长度为.
故答案为:;.
【答案点睛】
本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.
15、(或写成)
【答案解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.
【题目详解】
设与的夹角为
可得,
故,将代入可得
得到,
于是与的夹角为.
故答案为:.
【答案点睛】
本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.
16、答案不唯一,如
【答案解析】
根据对基本函数的理解可得到满足条件的函数.
【题目详解】
由题意,不妨设,
则在都成立,
但是在是单调递增的,在是单调递减的,
说明原命题是假命题.
所以本题答案为,答案不唯一,符合条件即可.
【答案点睛】
本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)线的普通方程为,曲线的直角坐标方程为;(2).
【答案解析】
试题分析:(1)(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;
(2)由过的圆心,得得,设,,代入中即可得解.
试题解析:
(1)曲线的普通方程为,化成极坐标方程为
曲线的直角坐标方程为
(2)在直角坐标系下,,,
恰好过的圆心,
∴由得 ,是椭圆上的两点,
在极坐标下,设,分别代入中,
有和
∴,
则,即
18、(1)答案见解析.(2)答案见解析
【答案解析】
(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解.
(2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.
【题目详解】