温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南
红河
一中
第五
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( )
A. B. C.或- D.和-
2.设复数满足,在复平面内对应的点的坐标为则( )
A. B.
C. D.
3.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )
A. B.
C. D.
4.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( )
A.-1 B.1 C. D.
5.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么( )
A.当时,该命题不成立 B.当时,该命题成立
C.当时,该命题不成立 D.当时,该命题成立
6.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )
A. B.
C. D.
7.若P是的充分不必要条件,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )
A. B. C. D.
9.若向量,,则与共线的向量可以是( )
A. B. C. D.
10.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为
A. B. C. D.
11.给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;
③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
④垂直于同一直线的两条直线必平行.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
12.设,,是非零向量.若,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.
14.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.
15.命题“对任意,”的否定是 .
16.的二项展开式中,含项的系数为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.
(1)求每件产品的平均销售利润;
(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.
表中,,,.
根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.
①求关于的回归方程;
②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)
附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.
18.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.
(1)求直方图中的值,并估计销量的中位数;
(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.
19.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:
来A城市发展的理由
人数
合计
自然环境
1.森林城市,空气清新
200
300
2.降水充足,气候怡人
100
人文环境
3.城市服务到位
150
700
4.创业氛围好
300
5.开放且包容
250
合计
1000
1000
(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;
(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;
(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?
自然环境
人文环境
合计
男
女
合计
附:,.
P()
0.050
0.010
0.001
k
3.841
6.635
10.828
20.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
21.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.
(Ⅰ)若线段的中点坐标为,求直线的方程;
(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.
22.(10分)已知数列,满足.
(1)求数列,的通项公式;
(2)分别求数列,的前项和,.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.
【题目详解】
如图,直线过定点(0,1),
∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,
∴由对称性可知k=±.
故选C.
【答案点睛】
本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.
2、B
【答案解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.
【题目详解】
在复平面内对应的点的坐标为,则,
,
∵,
代入可得,
解得.
故选:B.
【答案点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
3、D
【答案解析】
根据四个列联表中的等高条形图可知,
图中D中共享与不共享的企业经济活跃度的差异最大,
它最能体现共享经济对该部门的发展有显著效果,故选D.
4、D
【答案解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.
【题目详解】
如图所示:
因为是△的中位线,
所以到的距离等于△的边上高的一半,
所以,
由此可得,
当且仅当时,即为的中点时,等号成立,
所以,
由平行四边形法则可得,,
将以上两式相加可得,
所以,
又已知,
根据平面向量基本定理可得,
从而.
故选:D
【答案点睛】
本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.
5、C
【答案解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.
【题目详解】
由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,
由于当时,该命题不成立,则当时,该命题也不成立,故选:C.
【答案点睛】
本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.
6、D
【答案解析】
由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围.
【题目详解】
解:,或其积,或其商仍是该数列中的项,
或者或者是该数列中的项,
又数列是递增数列,
,
,,只有是该数列中的项,
同理可以得到,,,也是该数列中的项,且有,
,或(舍,,
根据,,,
同理易得,,,,,,
,
故选:D.
【答案点睛】
本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题.
7、B
【答案解析】
试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.
由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.
考点:逻辑命题
8、A
【答案解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.
【题目详解】
在中,,,,由余弦定理,得,
所以.
所以所求概率为.
故选A.
【答案点睛】
本题考查了几何概型的概率计算问题,是基础题.
9、B
【答案解析】
先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.
【题目详解】
故选B
【答案点睛】
本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.
10、C
【答案解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.
11、B
【答案解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据