温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
楚雄
大姚县
第一
中学
第一次
调研
测试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()
A. B. C. D.
2.甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )
A. B. C. D.
3.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是( )
A. B. C. D.
4.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为( )
A. B. C. D.
5. “”是“函数的图象关于直线对称”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.已知,函数在区间上恰有个极值点,则正实数的取值范围为( )
A. B. C. D.
7.执行如图所示的程序框图,如果输入,则输出属于( )
A. B. C. D.
8.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )
A.2 B.3 C.4 D.5
9.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )
A. B. C. D.
10.双曲线﹣y2=1的渐近线方程是( )
A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0
11.已知为虚数单位,实数满足,则 ( )
A.1 B. C. D.
12.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )
A.1 B.2 C.3 D.0
二、填空题:本题共4小题,每小题5分,共20分。
13.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.
14.已知数列的前项和公式为,则数列的通项公式为___.
15.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.
16.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,椭圆:的右焦点为
(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.
⑴求椭圆的标准方程;
⑵若时,,求实数;
⑶试问的值是否与的大小无关,并证明你的结论.
18.(12分)已知,均为正数,且.证明:
(1);
(2).
19.(12分)已知函数.
(Ⅰ)若是第二象限角,且,求的值;
(Ⅱ)求函数的定义域和值域.
20.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)求出易倒伏玉米茎高的中位数;
(2)根据茎叶图的数据,完成下面的列联表:
抗倒伏
易倒伏
矮茎
高茎
(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
附:,
0.050
0.010
0.001
3.841
6.635
10.828
21.(12分)已知数列满足,.
(1)求数列的通项公式;
(2)若,求数列的前项和.
22.(10分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.
【题目详解】
双曲线:的焦点到渐近线的距离为,
可得:,可得,,则的渐近线方程为.
故选A.
【答案点睛】
本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.
2、A
【答案解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.
3、A
【答案解析】
根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.
【题目详解】
如下图所示,平面,从而平面,
易知与正方体的其余四个面所在平面均相交,
∴,
∵平面,平面,且与正方体的其余四个面所在平面均相交,
∴,
∴结合四个选项可知,只有正确.
故选:A.
【答案点睛】
本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.
4、C
【答案解析】
根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.
【题目详解】
设,则
由椭圆的定义,可以得到
,
在中,有,解得
在中,有
整理得,
故选C项.
【答案点睛】
本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.
5、A
【答案解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.
【题目详解】
若函数的图象关于直线对称,
则,
解得,
故“”是“函数的图象关于直线对称”的充分不必要条件.
故选:A
【答案点睛】
本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.
6、B
【答案解析】
先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.
【题目详解】
解:
令,解得对称轴,,
又函数在区间恰有个极值点,只需
解得.
故选:.
【答案点睛】
本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.
(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.
7、B
【答案解析】
由题意,框图的作用是求分段函数的值域,求解即得解.
【题目详解】
由题意可知,
框图的作用是求分段函数的值域,
当;
当
综上:.
故选:B
【答案点睛】
本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.
8、A
【答案解析】
根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.
【题目详解】
由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,
故选:A.
【答案点睛】
本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.
9、A
【答案解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.
【题目详解】
解:设,∴,
又,两式相减得:,
∴,
∴,
∴直线的斜率为2,又∴过点,
∴直线的方程为:,即,
故选:A.
【答案点睛】
本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.
10、A
【答案解析】
试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.
解:双曲线
其渐近线方程是﹣y2=1
整理得x±2y=1.
故选A.
点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.
11、D
【答案解析】
,
则
故选D.
12、C
【答案解析】
由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.
【题目详解】
由三视图还原原几何体如图,
其中,,为直角三角形.
∴该三棱锥的表面中直角三角形的个数为3.
故选:C.
【答案点睛】
本小题主要考查由三视图还原为原图,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.
【题目详解】
根据题中的程序框图可得:,
执行循环体,,
不满足条件,执行循环体,,
此时,满足条件,退出循环,输出的值为.
故答案为:
【答案点睛】
本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.
14、
【答案解析】
由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式.
【题目详解】
由题意,可知当时,;
当时,.
又因为不满足,所以.
【答案点睛】
本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题.
15、
【答案解析】
分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.
详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则
∵∠APB的大小恒为定值,
∴t=,∴|OP|=.
故答案为
点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.
16、
【答案解析】
依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;
【题目详解】
解:依题意可得、、、四点共圆,
所以
因为,
所以,,
所以三角形为正三角形,则,,
利用余弦定理得
即,解得,则
所以,
当面面时,取得最大,
所以的外接圆的半径,
又面面,,且面面, 面
所以面,
所以外接球的半径
所以
故答案为:
【答案点睛】
本题考查多面体的外