温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
中国科学院
分院
中学
第一次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以,为直径的圆的方程是
A. B.
C. D.
2.若集合,,则( )
A. B. C. D.
3.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为( )
A.2 B.4 C.5 D.6
4.已知函数,若所有点,所构成的平面区域面积为,则( )
A. B. C.1 D.
5.已知与之间的一组数据:
1
2
3
4
3.2
4.8
7.5
若关于的线性回归方程为,则的值为( )
A.1.5 B.2.5 C.3.5 D.4.5
6.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
7.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=( )
A.{x|x>﹣2} B.{x|1<x<2} C.{x|1≤x≤2} D.∅
8.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )
A. B. C. D.
9.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为( )
A.1 B.
C.2 D.3
10.设为抛物线的焦点,,,为抛物线上三点,若,则( ).
A.9 B.6 C. D.
11.已知数列是公差为的等差数列,且成等比数列,则( )
A.4 B.3 C.2 D.1
12.设为非零实数,且,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.
14.已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_____.
15.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.
16.曲线在处的切线方程是_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.
(Ⅰ)证明:;
(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.
18.(12分)在中,.
(1)求的值;
(2)点为边上的动点(不与点重合),设,求的取值范围.
19.(12分)已知正项数列的前项和.
(1)若数列为等比数列,求数列的公比的值;
(2)设正项数列的前项和为,若,且.
①求数列的通项公式;
②求证:.
20.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线和圆的普通方程;
(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.
21.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.
(1)求证:平面;
(2)求直线与平面所成的角的正弦值.
22.(10分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.
(1)求及;
(2)设,设数列的前项和,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.
【题目详解】
设圆的标准方程为,
由题意得圆心为,的中点,
根据中点坐标公式可得,,
又,所以圆的标准方程为:
,化简整理得,
所以本题答案为A.
【答案点睛】
本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.
2、A
【答案解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【题目详解】
解:由集合,解得,
则
故选:.
【答案点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
3、B
【答案解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.
【题目详解】
由偶函数满足,
可得的图像关于直线对称且关于轴对称,
函数()的图像也关于对称,
函数的图像与函数()的图像的位置关系如图所示,
可知两个图像有四个交点,且两两关于直线对称,
则与的图像所有交点的横坐标之和为4.
故选:B
【答案点睛】
本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.
4、D
【答案解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.
【题目详解】
解:,因为,,
所以,在上单调递增,
则在上的值域为,
因为所有点所构成的平面区域面积为,
所以,
解得,
故选:D.
【答案点睛】
本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.
5、D
【答案解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.
【题目详解】
利用表格中数据,可得
又,
.
解得
故选:D
【答案点睛】
本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.
6、C
【答案解析】
试题分析:根据充分条件和必要条件的定义进行判断即可.
解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,
若数列{an}为单调递增数列,则a2>a1,成立,
即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,
故选C.
考点:必要条件、充分条件与充要条件的判断.
7、B
【答案解析】试题分析:由集合A中的函数,得到,解得:,∴集合,由集合B中的函数,得到,∴集合,则,故选B.
考点:交集及其运算.
8、D
【答案解析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.
【题目详解】
类产品共两件,类产品共三件,
则第一次检测出类产品的概率为;
不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;
故第一次检测出类产品,第二次检测出类产品的概率为;
故选:D.
【答案点睛】
本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.
9、B
【答案解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.
【题目详解】
设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.
故选:B.
【答案点睛】
本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.
10、C
【答案解析】
设,,,由可得,利用定义将用表示即可.
【题目详解】
设,,,由及,
得,故,
所以.
故选:C.
【答案点睛】
本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.
11、A
【答案解析】
根据等差数列和等比数列公式直接计算得到答案.
【题目详解】
由成等比数列得,即,已知,解得.
故选:.
【答案点睛】
本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.
12、C
【答案解析】
取,计算知错误,根据不等式性质知正确,得到答案.
【题目详解】
,故,,故正确;
取,计算知错误;
故选:.
【答案点睛】
本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.
【题目详解】
解:直线的方程为,即.
圆的圆心
到直线的距离,
由的面积是的面积的2倍的点,有且仅有一对,
可得点到的距离是点到直线的距离的2倍,
可得过圆的圆心,如图:
由,解得.
故答案为:.
【答案点睛】
本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.
14、
【答案解析】
试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为.
考点:余弦定理及等比数列的定义.
15、
【答案解析】
由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,
设长方体的长宽高为,由题意可得:
,据此可得:,
则球的表面积:,
结合解得:.
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
16、
【答案解析】
利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.
【题目详解】
求导得,
所以,所以切线方程为
故答案为:
【答案点睛】
本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)证明见解析(Ⅱ)
【答案解析】
(Ⅰ)由平面,可得,又因为是的中点,即得证;
(Ⅱ)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.
【题目详解】
(Ⅰ)如图,
连接交于点,连接,
则是平面与平面的交线,
因为平面,
故,
又因为是的中点,
所以是的中点,
故.
(Ⅱ)由条件可知,,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,
则,,,,,,,
设,
则,
设平面的法向量为,
则,即,故取
因为直线与平面所成角的大小为30°
所以,
即,
解得,故此时.
【答案点睛】
本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.
18、(1)(2)
【答案解析】
(1)先利用同角的三角函数关系求得,再由求解即可;
(2)在