温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年中
冲刺
动手
操作
运动
换型
问题
提高
中考冲刺:动手操作与运动变换型问题(提高)
中考冲刺:动手操作与运动变换型问题(提高)
一、选择题
1. (2023春•抚州期末)将一张正方形纸片按如以下图对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是( )
A. B. C. D.
2. (2023•邢台校级三模)一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的局部展开,展开后的这个图形的内角和是多少度?( )
A.1080° B.360° C.180° D.900°
3. 如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的B′处.得到Rt△AB′E(图乙),再延长EB′交AD于F,所得到的△EAF是( )
A. 等腰三角形 B. 等边三角形
C. 等腰直角三角形 D. 直角三角形
4. 如图,边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,那么CE的长是( )
A、 B、 C、 D、
二、填空题
5. 如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:______.
6.如图,△ABC中,∠BAC=600,∠ABC=450,AB= ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F ,连接EF,那么线段EF长度的最小值为___________
7.(2023•太仓市模拟)如图①,在四边形ABCD中,AD∥BC,∠C=90°,CD=6cm.动点Q从点B出发,以1cm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B→A→D运动到点D停止,且PQ⊥BC.设运动时间为t(s),点P运动的路程为y(cm),在直角坐标系中画出y关于t的函数图象为折线段OE和EF(如图②).点M(4,5)在线段OE上,那么图①中AB的长是______cm.
三、解答题
8.阅读以下材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.
他的做法是:按图(2)所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.
请你参考小明的做法解决以下问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图(3)中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MNPQ面积的大小(画图并直接写出结果).
9. 如图(a),把一张标准纸一次又一次对开,得到“2开〞纸、“4开〞纸、“8开〞纸、“16开〞纸…….标准纸的短边长为a.
(1)如图(b),把这张标准纸对开得到的“16开〞张纸按如下步骤折叠:
第一步 将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B′处,铺平后得折痕AE;
第二步 将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF;
那么AD:AB的值是________,AD,AB的长分别是________,________;
(2)“2开〞纸、“4开〞纸、“8开〞纸的长与宽之比是否都相等假设相等,直接写出这个比值;
假设不相等,请分别计算它们的比值;
(3)如图(c),由8个大小相等的小正方形构成“L〞型图案,它的4个顶点E,F,G,H分别在“16开〞纸的边AB,BC,CD,DA上,求DG的长;
(4)梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四个顶点M,N,P,Q都在“4开〞纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.
10. 操作与探究
(1)图(a)是一块直角三角形纸片.将该三角形纸片按图中方法折叠,点A与点C重合,DE为折痕.试证明△CBE是等腰三角形;
(2)再将图(b)中的△CBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形〞.你能将图(c)中的△ABC折叠成一个组合矩形吗?如果能折成,请在图(c)中画出折痕;
(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足以下条件:①折成的组合矩形为正方形;
②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形
11. 在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作例如:
当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如以下图),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究:
(1)正方形FGCH的面积是________;
(用含a、b的式子表示)
(2)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.
联想拓展:
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.
当b>a时,如以下图的图形能否剪拼成一个正方形?假设能,请你在图中画出剪拼的示意图;
假设不能,简要说明理由.
12. (2023•宿迁)△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.
(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长. 答案与解析 【答案与解析】 一、选择题
1.【答案】B;
【解析】由折叠可知,得到的四个圆形小洞一定不在一条直线上,故D不正确;
四个圆形小洞不靠近原正方形的四个角,所以A不正确;
选项C的位置也不符合原题意的要求,故只有B是按要求得到的.应选B.
2.【答案】A;
【解析】展开图的这个图形是八边形,故内角和为:(8﹣2)×180°=1080°.
3.【答案】B;
【解析】证明AE=AF,∠EAF=60°,得△EAF为等边三角形.
4.【答案】D.
二、填空题
5.【答案】
答案不唯一. 可供参考的有:①它内角的度数为60°、60°、120°、120°;
②它的腰长等于上底长;
③它的上底等于下底长的一半.
【解析】
拼图注意研究重叠的边和有公共点的角,由图可以看出三个下底上的角拼成一个平角,上底和腰相等.
6.【答案】;
【解析】
由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,
此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,当半径OE最短时,EF最短,连接OE,OF,
过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,
由圆周角定理可知∠EOH=12
∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.
如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
∵在Rt△ADB中,∠ABC=45°,AB= ,
∴AD=BD=2,即此时圆的直径为2,
由圆周角定理可知∠EOH= ∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE.sin∠EOH=1×= ,
由垂径定理可知EF=2EH=,
故答案为: .
7.【答案】10;
【解析】
解:设OE的解析式为y=kt,
∵点M(4,5),
∴k=,
如图,当Q运动到G点时,点P运动到A点,BQ=t,AB=,
∵AG⊥BC,
∴四边形ADCG是矩形,
∴AG=DC=6,
∴AB2=BG2+AG2,
∴()2=t2+62,
解得:t=8,
∴AB=×8=10(cm).
三、解答题
8.【答案与解析】
解:
(1)拼接成的平行四边形是ABCD(如以下图).
(2)正确画出图形(如以下图).
平行四边形MNPQ的面积为.
9.【答案与解析】
解:
(1),,.
(2)相等,比值为.
(3)设DG=x.
在矩形ABCD中,∠B=∠C=∠D=∠90°.
∵∠HGF=90°,
∴∠DHG=∠CGF=90°-∠DGH,
∴△HDG∽△GCF,
∴.
∴CF=2DG=2x.
同理∠BEF=∠CFG.
∵EF=FG.
∴△FBE∽△GCF,
∴BF=CG=.
∴.
解得,即.
(4),.
10.【答案与解析】
(1)由对称性可证∠ECB=∠B.
(2)如以下图,有3种折法.
(3)答案不唯一.只要有一条边与该边上的高相等即可.
(4)当一个四边形的两条对角线互相垂直时,可以折成一个组合矩形.
11.【答案与解析】
解:实验探究
(1)
(2)剪拼方法如图(1)(2)(3).
联想拓展
能,剪拼方法如图(4)(图中BG=DH=b).
(注意;
图(4)用其他剪拼方法能拼接成面积为的正方形均可)
12.【答案与解析】
解:(1)如图1中,∵CA=CB,∠ACB=90°,
∴∠A=∠ABC=45°,
∵△CEF是由△CAD旋转逆时针α得到,α=90°,
∴CB与CE重合,
∴∠CBE=∠A=45°,
∴∠ABF=∠AB