温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
同济大学
附中
第五
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知的展开式中的常数项为8,则实数( )
A.2 B.-2 C.-3 D.3
2.若均为任意实数,且,则 的最小值为( )
A. B. C. D.
3.已知向量,,当时,( )
A. B. C. D.
4.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )
A. B. C. D.
5.已知为虚数单位,复数,则其共轭复数( )
A. B. C. D.
6.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )
A.1 B.2 C.3 D.4
7.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
8. “”是“,”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
9. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )
A. B. C. D.
10.设实数、满足约束条件,则的最小值为( )
A.2 B.24 C.16 D.14
11.在中,,则 ( )
A. B. C. D.
12.已知实数,满足约束条件,则目标函数的最小值为
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____
14.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________.
15.设是公差不为0的等差数列的前项和,且,则______.
16.集合,,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为________
①的值可以为2;
②的值可以为;
③的值可以为;
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
18.(12分)已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)若在上恒成立,求实数的取值范围;
(Ⅲ)若数列的前项和,,求证:数列的前项和.
19.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
20.(12分)已知函数.
(1)解不等式;
(2)使得,求实数的取值范围.
21.(12分)已知函数存在一个极大值点和一个极小值点.
(1)求实数a的取值范围;
(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)
22.(10分)已知函数(,为自然对数的底数),.
(1)若有两个零点,求实数的取值范围;
(2)当时,对任意的恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为
展开式的常数项,从而求出的值.
【题目详解】
展开式的通项为,
当取2时,常数项为,
当取时,常数项为
由题知,则.
故选:A.
【答案点睛】
本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.
2、D
【答案解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.
【题目详解】
由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,
故选D.
【答案点睛】
本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.
3、A
【答案解析】
根据向量的坐标运算,求出,,即可求解.
【题目详解】
,
.
故选:A.
【答案点睛】
本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.
4、C
【答案解析】
设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.
【题目详解】
设球的半径为R,
根据题意圆柱的表面积为,
解得,
所以该球的体积为 .
故选:C
【答案点睛】
本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.
5、B
【答案解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.
【题目详解】
由,所以其共轭复数.
故选:B.
【答案点睛】
本题考查复数的乘法运算以及共轭复数的概念,难度较易.
6、C
【答案解析】
试题分析:根据题意,当时,令,得;当时,令,得
,故输入的实数值的个数为1.
考点:程序框图.
7、B
【答案解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【题目详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【答案点睛】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
8、B
【答案解析】
先求出满足的值,然后根据充分必要条件的定义判断.
【题目详解】
由得,即, ,因此“”是“,”的必要不充分条件.
故选:B.
【答案点睛】
本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.
9、C
【答案解析】
先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.
【题目详解】
解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,
则基本事件总数为,
则6和28恰好在同一组包含的基本事件个数,
∴6和28不在同一组的概率.
故选:C.
【答案点睛】
本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.
10、D
【答案解析】
做出满足条件的可行域,根据图形即可求解.
【题目详解】
做出满足的可行域,如下图阴影部分,
根据图象,当目标函数过点时,取得最小值,
由,解得,即,
所以的最小值为.
故选:D.
【答案点睛】
本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.
11、A
【答案解析】
先根据得到为的重心,从而,故可得,利用可得,故可计算的值.
【题目详解】
因为所以为的重心,
所以,
所以,
所以,因为,
所以,故选A.
【答案点睛】
对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.
12、B
【答案解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.
【题目详解】
解:作出不等式组对应的平面区域如图:
目标函数的几何意义为动点到定点的斜率,
当位于时,此时的斜率最小,此时.
故选B.
【答案点睛】
本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.
【题目详解】
解:因为轴截面是正方形,且面积是36,
所以圆柱的底面直径和高都是6
故答案为:
【答案点睛】
考查圆柱的轴截面和其体积的求法,是基础题.
14、6 12π﹣9
【答案解析】
过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.
【题目详解】
∵如图,弧田的弧AB长为4π,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.
∴α=∠AOB==,可得∠AOD=,OA=6,
∴AB=2AD=2OAsin=2×=6,
∴弧田的面积S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.
故答案为:6,12π﹣9.
【答案点睛】
本小题主要考查弓形弦长和弓形面积的计算,考查中国古代数学文化,属于中档题.
15、18
【答案解析】
先由,可得,再结合等差数列的前项和公式求解即可.
【题目详解】
解:因为,所以,.
故答案为:18.
【答案点睛】
本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.
16、②③
【答案解析】
根据对称性,只需研究第一象限的情况,计算:,得到,,得到答案.
【题目详解】
如图所示:根据对称性,只需研究第一象限的情况,
集合:,故,即或,
集合:,是平面上正八边形的顶点所构成的集合,
故所在的直线的倾斜角为,,故:,
解得,此时,,此时.
故答案为:②③.
【答案点睛】
本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2).
【答案解析】
(1)利用中位线的性质得出,然后利用线面平行的判定定理可证明出平面;
(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,利用空间向量法可求得直线与平面所成角的正弦值.
【题目详解】
(1)因为、分别为、的中点,所以.
又因为平面,平面,所以平面;
(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,
则