分享
2023届上海市南汇中学高三3月份第一次模拟考试数学试卷(含解析).doc
下载文档

ID:13366

大小:2.33MB

页数:24页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 上海市 南汇 中学 月份 第一次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A. B. C. D. 2.已知函数,,若总有恒成立.记的最小值为,则的最大值为( ) A.1 B. C. D. 3.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为( ) A. B. C. D. 4.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( ) A. B. C. D. 5.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为( ) A.20 B.30 C.50 D.60 6.函数(其中是自然对数的底数)的大致图像为( ) A. B. C. D. 7.设,,则的值为( ) A. B. C. D. 8.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为( ) A. B. C. D. 9.设,满足约束条件,则的最大值是( ) A. B. C. D. 10.已知,,,则的大小关系为( ) A. B. C. D. 11.下列命题中,真命题的个数为( ) ①命题“若,则”的否命题; ②命题“若,则或”; ③命题“若,则直线与直线平行”的逆命题. A.0 B.1 C.2 D.3 12.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.若,且,则的最小值是______. 14.已知函数,则曲线在点处的切线方程为___________. 15.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______. 16.已知集合,,则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下: 等级 不合格 合格 得分 频数 6 24 (1)由该题中频率分布直方图求测试成绩的平均数和中位数; (2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率; (3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望. 18.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润. (1)根据直方图估计这个开学季内市场需求量的平均数和众数; (2)将表示为的函数; (3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率. 19.(12分)在中,内角的对边分别为,且 (1)求; (2)若,且面积的最大值为,求周长的取值范围. 20.(12分)已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S. (1)将l表示成θ的函数,并确定θ的取值范围; (2)求l的最小值及此时的值; (3)问当θ为何值时,的面积S取得最小值?并求出这个最小值. 21.(12分)已知函数 (1)若对任意恒成立,求实数的取值范围; (2)求证: 22.(10分)如图,在四棱锥中,是等边三角形,,,. (1)若,求证:平面; (2)若,求二面角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 计算求半径为,再计算球体积和圆锥体积,计算得到答案. 【题目详解】 如图所示:设球半径为,则,解得. 故求体积为:,圆锥的体积:,故. 故选:. 【答案点睛】 本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力. 2、C 【答案解析】 根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值, 即.根据题意化简可得,求得,再换元求导分析最大值即可. 【题目详解】 由题, 总有即恒成立. 设,则的最大值小于等于0. 又, 若则,在上单调递增, 无最大值. 若,则当时,,在上单调递减, 当时,,在上单调递增. 故在处取得最大值. 故,化简得. 故,令,可令, 故,当时, ,在递减; 当时, ,在递增. 故在处取得极大值,为. 故的最大值为. 故选:C 【答案点睛】 本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题. 3、A 【答案解析】 令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x, 令y=x﹣ln(x+1),y′=1﹣=, 故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数, 故当x=﹣1时,y有最小值﹣1﹣0=﹣1, 而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立); 故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立); 故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A. 4、B 【答案解析】 考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围. 【题目详解】 因为的图象上关于原点对称的点有2对, 所以时,有两个不同的实数解. 令,则在有两个不同的零点. 又, 当时,,故在上为增函数, 在上至多一个零点,舍. 当时, 若,则,在上为增函数; 若,则,在上为减函数; 故, 因为有两个不同的零点,所以,解得. 又当时,且,故在上存在一个零点. 又,其中. 令,则, 当时,,故为减函数, 所以即. 因为,所以在上也存在一个零点. 综上,当时,有两个不同的零点. 故选:B. 【答案点睛】 本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题. 5、D 【答案解析】 先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解. 【题目详解】 由题意,设A点的坐标为,根据对称性可得, 则的面积为, 当最大时,的面积最大, 由图象可知,当点A在椭圆的上下顶点时,此时的面积最大, 又由,可得椭圆的上下顶点坐标为, 所以的面积的最大值为. 故选:D. 【答案点睛】 本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用. 6、D 【答案解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D. 7、D 【答案解析】 利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果. 【题目详解】 ,, ,, ,,, , 故选:D. 【答案点睛】 该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目. 8、D 【答案解析】 根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程. 【题目详解】 如图所示: 因为,所以, 又因为,所以,所以, 所以,所以, 所以,所以, 所以渐近线方程为. 故选:D. 【答案点睛】 本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半. 9、D 【答案解析】 作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值. 【题目详解】 作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值. 由得:, 故选:D 【答案点睛】 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题. 10、A 【答案解析】 根据指数函数与对数函数的单调性,借助特殊值即可比较大小. 【题目详解】 因为, 所以. 因为, 所以, 因为,为增函数, 所以 所以, 故选:A. 【答案点睛】 本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题. 11、C 【答案解析】 否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确. 【题目详解】 ①的逆命题为“若,则”, 令,可知该命题为假命题,故否命题也为假命题; ②的逆否命题为“若且,则”,该命题为真命题,故②为真命题; ③的逆命题为“若直线与直线平行,则”,该命题为真命题. 故选:C. 【答案点睛】 本题考查判断命题真假. 判断命题真假的思路: (1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断. (2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法: ①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可. 12、C 【答案解析】 由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案. 【题目详解】 由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6, 该几何体的表面积. 故选:C 【答案点睛】 本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键. 二、填空题:本题共4小题,每小题5分,共20分。 13、8 【答案解析】 利用的代换,将写成,然后根据基本不等式求解最小值. 【题目详解】 因为(即 取等号

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开