分享
2023届上海市南洋中学高三二诊模拟考试数学试卷(含解析).doc
下载文档

ID:13357

大小:1.69MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 上海市 南洋 中学 高三二诊 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( ) A. B. C. D. 2.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表: 0.01 0.05 0.025 0.010 0.005 0.001 2.706 3.841 5.024 6.635 7.879 10.828 得到正确结论是( ) A.有99%以上的把握认为“学生性别与中学生追星无关” B.有99%以上的把握认为“学生性别与中学生追星有关” C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关” D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关” 3.已知 ,,且是的充分不必要条件,则的取值范围是( ) A. B. C. D. 4.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A. B. C. D. 5.在中,“”是“为钝角三角形”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 6.函数的部分图像大致为( ) A. B. C. D. 7.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( ) A. B. C. D. 8.已知实数,满足,则的最大值等于( ) A.2 B. C.4 D.8 9.函数在的图像大致为 A. B. C. D. 10.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则( ) A. B. C. D. 11.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( ) A.月下旬新增确诊人数呈波动下降趋势 B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数 C.月日至月日新增确诊人数波动最大 D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值 12.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的; 小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的, 若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A.小明 B.小红 C.小金 D.小金或小明 二、填空题:本题共4小题,每小题5分,共20分。 13.的二项展开式中,含项的系数为__________. 14.设实数x,y满足,则点表示的区域面积为______. 15.已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为________. 16.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知. (1)当时,求不等式的解集; (2)若时不等式成立,求的取值范围. 18.(12分)设,,其中. (1)当时,求的值; (2)对,证明:恒为定值. 19.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是. (1)求的值: (2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值. 20.(12分)设函数. (1)当时,求不等式的解集; (2)若不等式恒成立,求实数a的取值范围. 21.(12分)己知,,. (1)求证:; (2)若,求证:. 22.(10分)已知函数,. (1)讨论的单调性; (2)若存在两个极值点,,证明:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案. 【题目详解】 解:因为函数为偶函数, 所以函数的图象关于对称, 因为对任意, ,都有, 所以函数在上为减函数, 则, 解得:. 即实数的取值范围是. 故选:A. 【答案点睛】 本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题. 2、B 【答案解析】 通过与表中的数据6.635的比较,可以得出正确的选项. 【题目详解】 解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B. 【答案点睛】 本题考查了独立性检验的应用问题,属于基础题. 3、D 【答案解析】 “是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集. 【题目详解】 由题意知:可化简为,, 所以中变量取值的集合是中变量取值集合的真子集,所以. 【答案点睛】 利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解. 4、B 【答案解析】 因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案. 【题目详解】 因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为. 故选:B 【答案点睛】 本题主要考查正负角的定义以及弧度制,属于基础题. 5、C 【答案解析】 分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果. 详解:由题意可得,在中,因为, 所以,因为, 所以,, 结合三角形内角的条件,故A,B同为锐角,因为, 所以,即,所以, 因此,所以是锐角三角形,不是钝角三角形, 所以充分性不满足, 反之,若是钝角三角形,也推不出“,故必要性不成立, 所以为既不充分也不必要条件,故选D. 点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征. 6、A 【答案解析】 根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案. 【题目详解】 解:因为, 所以的定义域为, 则, ∴为偶函数,图象关于轴对称,排除选项, 且当时,,排除选项,所以正确. 故选:A. 【答案点睛】 本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除. 7、C 【答案解析】 设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可. 【题目详解】 设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域, 所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为: . 故选:C 【答案点睛】 本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力. 8、D 【答案解析】 画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值. 【题目详解】 画出可行域如下图所示,其中,由于,,所以, 所以原点到可行域上的点的最大距离为. 所以的最大值为. 故选:D 【答案点睛】 本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题. 9、B 【答案解析】 由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果. 【题目详解】 设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B. 【答案点睛】 本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 10、D 【答案解析】 由半圆面积之比,可求出两个直角边 的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出. 【题目详解】 解:由题意知 ,以 为直径的半圆面积, 以 为直径的半圆面积,则,即. 由 ,得 ,所以. 故选:D. 【答案点睛】 本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值. 11、D 【答案解析】 根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论. 【题目详解】 对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确; 对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确; 对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确; 对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误. 故选:D. 【答案点睛】 本题考查统计图表的应用,考查数据处理能力,属于基础题. 12、B 【答案解析】 将三个人制作的所有情况列举出来,再一一论证. 【题目详解】 依题意,三个人制作的所有情况如下所示: 1 2 3 4 5 6 鸿福齐天 小明 小明 小红 小红 小金 小金 国富民强 小红 小金 小金 小明 小红 小明 兴国之路 小金 小红 小明 小金 小明 小红 若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红, 故选:B. 【答案点睛】 本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得. 【题目详解】 , 由,可得. 含项的系数为. 故答案为: 【答案点睛】 本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题. 14、 【答案解析】 先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开