分享
2023届上海市浦东新区建平中学高三第五次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 上海市 浦东新区 建平 中学 第五 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数的图象大致为(    ) A. B. C. D. 2.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种 A. B. C. D. 3.下列判断错误的是( ) A.若随机变量服从正态分布,则 B.已知直线平面,直线平面,则“”是“”的充分不必要条件 C.若随机变量服从二项分布: , 则 D.是的充分不必要条件 4.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) A. B. C. D. 5.已知正项数列满足:,设,当最小时,的值为( ) A. B. C. D. 6.若,则的虚部是( ) A. B. C. D. 7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A.72种 B.144种 C.288种 D.360种 8.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( ) A. B. C. D. 9.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( ) A. B. C. D.4 10.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于(  ) A. B.8 C. D.4 11.复数 (i为虚数单位)的共轭复数是 A.1+i B.1−i C.−1+i D.−1−i 12.函数的定义域为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设满足约束条件,则目标函数的最小值为_. 14.若随机变量的分布列如表所示,则______,______. -1 0 1 15.如图所示,平面BCC1B1⊥平面ABC,ÐABC=120°,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____. 16.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示: 月份 1月 2月 3月 4月 5月 6月 7月 8月 月养殖量/千只3 3 4 5 6 7 9 10 12 月利润/十万元 3.6 4.1 4.4 5.2 6.2 7.5 7.9 9.1 生猪死亡数/只 29 37 49 53 77 98 126 145 (1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率; (2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001). (3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元? 附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:, 参考数据:. 18.(12分)在中,设、、分别为角、、的对边,记的面积为,且. (1)求角的大小; (2)若,,求的值. 19.(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线. (Ⅰ)求的方程; (Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求. 20.(12分)已知函数, (Ⅰ)当时,证明; (Ⅱ)已知点,点,设函数,当时,试判断的零点个数. 21.(12分)已知. (1)解不等式; (2)若均为正数,且,求的最小值. 22.(10分)已知离心率为的椭圆经过点. (1)求椭圆的方程; (2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 用偶函数的图象关于轴对称排除,用排除,用排除.故只能选. 【题目详解】 因为 , 所以函数为偶函数,图象关于轴对称,故可以排除; 因为,故排除, 因为由图象知,排除. 故选:A 【答案点睛】 本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题. 2、C 【答案解析】 在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果. 【题目详解】 两组至少都是人,则分组中两组的人数分别为、或、, 又因为名女干部不能单独成一组,则不同的派遣方案种数为. 故选:C. 【答案点睛】 本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题. 3、D 【答案解析】 根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【题目详解】 对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意; 对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意; 对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意; 对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立. 因而是的既不充分也不必要条件,故选项不正确,符合题意. 故选:D 【答案点睛】 本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题. 4、A 【答案解析】 设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果. 【题目详解】 设E为BD中点,连接AE、CE, 由题可知,,所以平面, 过A作于点O,连接DO,则平面, 所以即为直线AD与平面BCD所成角的平面角, 所以,可得, 在中可得, 又,即点O与点C重合,此时有平面, 过C作与点F, 又,所以,所以平面, 从而角即为直线AC与平面ABD所成角,, 故选:A. 【答案点睛】 该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目. 5、B 【答案解析】 由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出. 【题目详解】 由得, 即, ,当且仅当时取得最小值, 此时. 故选:B 【答案点睛】 本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力. 6、D 【答案解析】 通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部. 【题目详解】 由题可知, 所以的虚部是1. 故选:D. 【答案点睛】 本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 7、B 【答案解析】 利用分步计数原理结合排列求解即可 【题目详解】 第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种. 选. 【答案点睛】 本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题 8、C 【答案解析】 令圆的半径为1,则,故选C. 9、D 【答案解析】 如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案. 【题目详解】 如图所示:过点作垂直准线于,交轴于,则, 设,,则, 当,即时等号成立. 故选:. 【答案点睛】 本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力. 10、C 【答案解析】 将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值. 【题目详解】 F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0, 设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1. 由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1, ∴||FA|﹣|FB||=|x1﹣x2|=. 故选C. 【答案点睛】 本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题. 11、B 【答案解析】 分析:化简已知复数z,由共轭复数的定义可得. 详解:化简可得z= ∴z的共轭复数为1﹣i. 故选B. 点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题. 12、C 【答案解析】 函数的定义域应满足 故选C. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值. 【题目详解】 由满足约束条件,画出可行域如图所示阴影部分: 将目标函数,转化为, 平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为 故答案为:-1 【答案点睛】 本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题. 14、 【答案解析】 首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可. 【题目详解】 由题意可知,解得(舍去)或. 则, 则, 由方差的计算性质得. 【答案点睛】 本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力. 15、 【答案解析】 将平移到和相交的位置,解三角形求得线线角的余弦值. 【题目详解】 过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故. 【答案点睛】 本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题. 16、或 【答案解析】 设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可. 【题目详解】 抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以, 因为线段的垂直平分线与轴交于,所以,因此有 ,化简整理得:

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开