温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
浦东新区
建平
中学
第五
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的图象大致为( )
A. B.
C. D.
2.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种
A. B. C. D.
3.下列判断错误的是( )
A.若随机变量服从正态分布,则
B.已知直线平面,直线平面,则“”是“”的充分不必要条件
C.若随机变量服从二项分布: , 则
D.是的充分不必要条件
4.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( )
A. B. C. D.
5.已知正项数列满足:,设,当最小时,的值为( )
A. B. C. D.
6.若,则的虚部是( )
A. B. C. D.
7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )
A.72种 B.144种 C.288种 D.360种
8.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
9.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )
A. B. C. D.4
10.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于( )
A. B.8 C. D.4
11.复数 (i为虚数单位)的共轭复数是
A.1+i B.1−i C.−1+i D.−1−i
12.函数的定义域为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设满足约束条件,则目标函数的最小值为_.
14.若随机变量的分布列如表所示,则______,______.
-1
0
1
15.如图所示,平面BCC1B1⊥平面ABC,ÐABC=120°,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.
16.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:
月份
1月
2月
3月
4月
5月
6月
7月
8月
月养殖量/千只3
3
4
5
6
7
9
10
12
月利润/十万元
3.6
4.1
4.4
5.2
6.2
7.5
7.9
9.1
生猪死亡数/只
29
37
49
53
77
98
126
145
(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;
(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).
(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?
附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,
参考数据:.
18.(12分)在中,设、、分别为角、、的对边,记的面积为,且.
(1)求角的大小;
(2)若,,求的值.
19.(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.
(Ⅰ)求的方程;
(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
20.(12分)已知函数,
(Ⅰ)当时,证明;
(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.
21.(12分)已知.
(1)解不等式;
(2)若均为正数,且,求的最小值.
22.(10分)已知离心率为的椭圆经过点.
(1)求椭圆的方程;
(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.
【题目详解】
因为 ,
所以函数为偶函数,图象关于轴对称,故可以排除;
因为,故排除,
因为由图象知,排除.
故选:A
【答案点睛】
本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.
2、C
【答案解析】
在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.
【题目详解】
两组至少都是人,则分组中两组的人数分别为、或、,
又因为名女干部不能单独成一组,则不同的派遣方案种数为.
故选:C.
【答案点睛】
本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.
3、D
【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.
【题目详解】
对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;
对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;
对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;
对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.
因而是的既不充分也不必要条件,故选项不正确,符合题意.
故选:D
【答案点睛】
本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.
4、A
【答案解析】
设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.
【题目详解】
设E为BD中点,连接AE、CE,
由题可知,,所以平面,
过A作于点O,连接DO,则平面,
所以即为直线AD与平面BCD所成角的平面角,
所以,可得,
在中可得,
又,即点O与点C重合,此时有平面,
过C作与点F,
又,所以,所以平面,
从而角即为直线AC与平面ABD所成角,,
故选:A.
【答案点睛】
该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.
5、B
【答案解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.
【题目详解】
由得,
即,
,当且仅当时取得最小值,
此时.
故选:B
【答案点睛】
本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.
6、D
【答案解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.
【题目详解】
由题可知,
所以的虚部是1.
故选:D.
【答案点睛】
本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.
7、B
【答案解析】
利用分步计数原理结合排列求解即可
【题目详解】
第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.
选.
【答案点睛】
本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题
8、C
【答案解析】
令圆的半径为1,则,故选C.
9、D
【答案解析】
如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.
【题目详解】
如图所示:过点作垂直准线于,交轴于,则,
设,,则,
当,即时等号成立.
故选:.
【答案点睛】
本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.
10、C
【答案解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.
【题目详解】
F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,
设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.
由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,
∴||FA|﹣|FB||=|x1﹣x2|=.
故选C.
【答案点睛】
本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.
11、B
【答案解析】
分析:化简已知复数z,由共轭复数的定义可得.
详解:化简可得z=
∴z的共轭复数为1﹣i.
故选B.
点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.
12、C
【答案解析】
函数的定义域应满足
故选C.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.
【题目详解】
由满足约束条件,画出可行域如图所示阴影部分:
将目标函数,转化为,
平移直线,找到直线在轴上截距最小时的点
此时,目标函数 取得最小值,最小值为
故答案为:-1
【答案点睛】
本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.
14、
【答案解析】
首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.
【题目详解】
由题意可知,解得(舍去)或.
则,
则,
由方差的计算性质得.
【答案点睛】
本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力.
15、
【答案解析】
将平移到和相交的位置,解三角形求得线线角的余弦值.
【题目详解】
过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.
【答案点睛】
本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.
16、或
【答案解析】
设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.
【题目详解】
抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,
因为线段的垂直平分线与轴交于,所以,因此有
,化简整理得: