温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
黑龙江省
齐齐哈尔市
普通高中
联谊
校高三
第六
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(i是虚数单位)在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )
(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)
A.0.110 B.0.112 C. D.
3.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D.2
4.设是虚数单位,若复数,则( )
A. B. C. D.
5.设复数满足,在复平面内对应的点的坐标为则( )
A. B.
C. D.
6.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )
A. B. C.0 D.
7.的展开式中的系数是-10,则实数( )
A.2 B.1 C.-1 D.-2
8.将函数向左平移个单位,得到的图象,则满足( )
A.图象关于点对称,在区间上为增函数
B.函数最大值为2,图象关于点对称
C.图象关于直线对称,在上的最小值为1
D.最小正周期为,在有两个根
9.曲线在点处的切线方程为,则( )
A. B. C.4 D.8
10.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是( )
A. B. C. D.
11.已知复数,则的虚部为( )
A. B. C. D.1
12.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为( )
A.1 B.
C.2 D.3
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若,则实数的取值范围为__________.
14.函数在的零点个数为________.
15.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________ .
16.设实数x,y满足,则点表示的区域面积为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)讨论的单调性;
(2)若存在两个极值点,,证明:.
18.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.
(1)求证:平面;
(2)求二面角的正弦值.
19.(12分)已知,.
(1)解;
(2)若,证明:.
20.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.
(1)求抛物线的方程;
(2)求证:直线恒过定点,并求面积的最小值.
21.(12分)已知函数
(1)若函数在处取得极值1,证明:
(2)若恒成立,求实数的取值范围.
22.(10分)已知数列满足且
(1)求数列的通项公式;
(2)求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
利用复数的四则运算以及几何意义即可求解.
【题目详解】
解:,
则复数(i是虚数单位)在复平面内对应的点的坐标为:,
位于第二象限.
故选:B.
【答案点睛】
本题考查了复数的四则运算以及复数的几何意义,属于基础题.
2、C
【答案解析】
根据题意知,,代入公式,求出即可.
【题目详解】
由题意可得,因为,
所以,即.
所以这种射线的吸收系数为.
故选:C
【答案点睛】
本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.
3、B
【答案解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.
【题目详解】
根据圆柱的三视图以及其本身的特征,
将圆柱的侧面展开图平铺,
可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,
所以所求的最短路径的长度为,故选B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.
4、A
【答案解析】
结合复数的除法运算和模长公式求解即可
【题目详解】
∵复数,∴,,则,
故选:A.
【答案点睛】
本题考查复数的除法、模长、平方运算,属于基础题
5、B
【答案解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.
【题目详解】
在复平面内对应的点的坐标为,则,
,
∵,
代入可得,
解得.
故选:B.
【答案点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
6、C
【答案解析】
先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.
【题目详解】
记圆的圆心为,设,则,设,记,则
,令,
因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).
故选:C
【答案点睛】
此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.
7、C
【答案解析】
利用通项公式找到的系数,令其等于-10即可.
【题目详解】
二项式展开式的通项为,令,得,
则,所以,解得.
故选:C
【答案点睛】
本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.
8、C
【答案解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.
【题目详解】
函数,
则,
将向左平移个单位,
可得,
由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;
对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;
对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;
综上可知,正确的为C,
故选:C.
【答案点睛】
本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.
9、B
【答案解析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.
【题目详解】
因为,
所以,
故,
解得,
又切线过点,
所以,解得,
所以,
故选:B
【答案点睛】
本题主要考查了导数的几何意义,切线方程,属于中档题.
10、D
【答案解析】
利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.
【题目详解】
的定义域为,,
所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,
所以在区间上的最大值为.
要使在区间上任取三个实数,,均存在以,,为边长的三角形,
则需恒成立,且,
也即,也即当、时,成立,
即,且,解得.所以的取值范围是.
故选:D
【答案点睛】
本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.
11、C
【答案解析】
先将,化简转化为,再得到下结论.
【题目详解】
已知复数,
所以,
所以的虚部为-1.
故选:C
【答案点睛】
本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.
12、B
【答案解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.
【题目详解】
设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.
故选:B.
【答案点睛】
本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.
【题目详解】
作出函数的图如下所示,
观察可知,函数为偶函数,且在上单调递增,
在上单调递减,故
,
故实数的取值范围为.
故答案为:
【答案点睛】
本题考查利用函数奇偶性及单调性解不等式. 函数奇偶性的常用结论:
(1)如果函数是偶函数,那么.
(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
14、
【答案解析】
求出的范围,再由函数值为零,得到的取值可得零点个数.
【题目详解】
详解:
由题可知,或
解得,或
故有3个零点.
【答案点睛】
本题主要考查三角函数的性质和函数的零点,属于基础题.
15、
【答案解析】
根据题意,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上,列出方程解得即可得到结论.
【题目详解】
由,,设的中点为,
根据题意,可得,且,
解得,,,故.
故答案为:.
【答案点睛】
本题考查相交弦的性质,解题的关键在于利用相交弦的性质,即两圆的连心线垂直平分相交弦,属于基础题.
16、
【答案解析】
先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.
【题目详解】
画出实数x,y满足表示的平面区域,如图(阴影部分):
则阴影部分的面积,
故答案为:
【答案点睛】
本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)见解析
【答案解析】
(1)求得的导函数,对分成两种情况,讨论的单调性.
(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.
【题目详解】
(1).
当时,,此时在上单调递减;
当时,由解得或,∵是增函数,∴此时在和单调递减,在单调递增.
(2)由(1)知.,,,
不妨设,∴,
,
令,
∴,
∴在上是减函数