分享
2023学年黑龙江省大庆市让胡路区铁人中学高三考前热身数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 黑龙江省 大庆市 让胡路区 铁人 中学 考前 热身 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( ) A. B. C. D. 2.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( ) A. B. C. D. 3.在菱形中,,,,分别为,的中点,则( ) A. B. C.5 D. 4.已知,,,,则( ) A. B. C. D. 5.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( ) A. B. C. D. 6.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是( ) A.③④ B.①③ C.②③ D.①② 7.的二项展开式中,的系数是( ) A.70 B.-70 C.28 D.-28 8.已知数列为等差数列,且,则的值为( ) A. B. C. D. 9.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( ) A. B. C. D. 10.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( ) A. B. C. D. 11.函数的图像大致为( ). A. B. C. D. 12.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为( )m. A.1 B. C. D.2 二、填空题:本题共4小题,每小题5分,共20分。 13.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆 (an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______ 14.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________. 15.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 . 16.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和; (2)已知数列满足: (ⅰ)对任意的; (ⅱ)对任意的,,且. ①若,求数列是等比数列的充要条件. ②求证:数列是等比数列,其中. 18.(12分)如图所示,在四面体中,,平面平面,,且. (1)证明:平面; (2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值. 19.(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示: (1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由; (2)根据统计数据建立一个列联表; (3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系. 附: 20.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. 求证:(1)AM∥平面BDE; (2)AM⊥平面BDF. 21.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为. (1)求椭圆的方程; (2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由. 22.(10分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线. (1)求曲线的方程; (2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果. 【题目详解】 由抛物线焦点在轴上,准线方程, 则点到焦点的距离为,则, 所以抛物线方程:, 设,圆,圆心为,半径为1, 则, 当时,取得最小值,最小值为, 故选D. 【答案点睛】 该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目. 2、C 【答案解析】 设,求,作为的函数,其最小值是6,利用导数知识求的最小值. 【题目详解】 设,则,记, ,易知是增函数,且的值域是, ∴的唯一解,且时,,时,,即, 由题意,而,, ∴,解得,. ∴. 故选:C. 【答案点睛】 本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键. 3、B 【答案解析】 据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果. 【题目详解】 设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系, 则,,,,, 所以. 故选:B. 【答案点睛】 本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解. 4、D 【答案解析】 令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案. 【题目详解】 时, 令,求导 ,,故单调递增: ∴, 当,设, , 又, ,即, 故. 故选:D 【答案点睛】 本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题. 5、D 【答案解析】 如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率. 【题目详解】 如图,设双曲线的右焦点为,连接,连接并延长交右支于. 因为,故四边形为平行四边形,故. 又双曲线为中心对称图形,故. 设,则,故,故. 因为为直角三角形,故,解得. 在中,有,所以. 故选:D. 【答案点睛】 本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题. 6、C 【答案解析】 ①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时. 【题目详解】 ①当直线x、y、z位于正方体的三条共点棱时,不正确; ②因为垂直于同一平面的两直线平行,正确; ③因为垂直于同一直线的两平面平行,正确; ④如x、y、z位于正方体的三个共点侧面时, 不正确. 故选:C. 【答案点睛】 此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目. 7、A 【答案解析】 试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A. 考点:二项式定理的应用. 8、B 【答案解析】 由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得. 【题目详解】 解:由等差数列的性质可得,解得, , 故选:B. 【答案点睛】 本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题. 9、B 【答案解析】 根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值. 【题目详解】 由于,函数最高点与最低点的高度差为, 所以函数的半个周期,所以, 又,,则有,可得, 所以, 将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数, 所以的最小值为1, 故选:B. 【答案点睛】 该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目. 10、B 【答案解析】 由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率. 【题目详解】 如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和. 故选:B 【答案点睛】 此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题. 11、A 【答案解析】 本题采用排除法: 由排除选项D; 根据特殊值排除选项C; 由,且无限接近于0时, 排除选项B; 【题目详解】 对于选项D:由题意可得, 令函数 , 则,; 即.故选项D排除; 对于选项C:因为,故选项C排除; 对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除; 故选项:A 【答案点睛】 本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题. 12、C 【答案解析】 由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解 【题目详解】 由题中图像可得, 由变速直线运动的路程公式,可得 . 所以物体在间的运动路程是. 故选:C 【答案点睛】 本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 第一空:将圆与联立,利用计算即可; 第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得. 【题目详解】 当r1=1时,圆, 与联立消去得, 则,解得; 由图可知当时,①, 将与联立消去得 , 则, 整理得,代入①得, 整理得, 则. 故答案为:;. 【答案点睛】 本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目. 14、 【答案解析】 设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得. 【题目详解】 解:设正四棱柱的底面边长,高, 则, 即 故答案为: 【答案点睛】 本题考查柱体、锥体的体

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开