温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
富宁县
第二
中学
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,若函数有三个零点,则实数的取值范围是( )
A. B. C. D.
2.已知数列为等差数列,为其前 项和,,则( )
A. B. C. D.
3.已知,,,则的最小值为( )
A. B. C. D.
4.已知过点且与曲线相切的直线的条数有( ).
A.0 B.1 C.2 D.3
5.函数的大致图象是
A. B. C. D.
6.已知向量,,=(1,),且在方向上的投影为,则等于( )
A.2 B.1 C. D.0
7.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )
A. B. C. D.
8.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )
A. B. C. D.
9.在满足,的实数对中,使得成立的正整数的最大值为( )
A.5 B.6 C.7 D.9
10.已知正项等比数列满足,若存在两项,,使得,则的最小值为( ).
A.16 B. C.5 D.4
11.抛物线的焦点为,点是上一点,,则( )
A. B. C. D.
12.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.
14.设函数在区间上的值域是,则的取值范围是__________.
15.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).
①;
②这名学生中数学成绩在分以下的人数为;
③这名学生数学成绩的中位数约为;
④这名学生数学成绩的平均数为.
16.在长方体中,,,,为的中点,则点到平面的距离是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.
(1).求证:平面平面;
(2).若二面角的余弦值为,求直线与平面所成角的正弦值.
18.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.
(1)若,求的前项和;
(2)证明:的“极差数列”仍是;
(3)求证:若数列是等差数列,则数列也是等差数列.
19.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积.令
a11
a12
…
a1n
a21
a22
a2n
…
…
…
…
an1
an2
…
ann
(Ⅰ)请写出一个AS(4,4),使得l(A)=0;
(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;
(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.
20.(12分)在中,角所对的边分别为,,的面积.
(1)求角C;
(2)求周长的取值范围.
21.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
22.(10分)已知函数,若的解集为.
(1)求的值;
(2)若正实数,,满足,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.
【题目详解】
根据题意,画出函数图像如下图所示:
函数的零点,即.
由图像可知,,
所以是的一个零点,
当时,,若,
则,即,所以,解得;
当时,,
则,且
若在时有一个零点,则,
综上可得,
故选:B.
【答案点睛】
本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.
2、B
【答案解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.
【题目详解】
由等差数列的性质可得,
.
故选:B.
【答案点睛】
本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.
3、B
【答案解析】
,选B
4、C
【答案解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.
【题目详解】
若直线与曲线切于点,则,
又∵,∴,∴,解得,,
∴过点与曲线相切的直线方程为或,
故选C.
【答案点睛】
本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.
5、A
【答案解析】
利用函数的对称性及函数值的符号即可作出判断.
【题目详解】
由题意可知函数为奇函数,可排除B选项;
当时,,可排除D选项;
当时,,当时,,
即,可排除C选项,
故选:A
【答案点睛】
本题考查了函数图象的判断,函数对称性的应用,属于中档题.
6、B
【答案解析】
先求出,再利用投影公式求解即可.
【题目详解】
解:由已知得,
由在方向上的投影为,得,
则.
故答案为:B.
【答案点睛】
本题考查向量的几何意义,考查投影公式的应用,是基础题.
7、C
【答案解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.
【题目详解】
解:由,翻折后得到,又,
则面,可知.
又因为,则面,于是,
因此三棱锥外接球球心是的中点.
计算可知,则外接球半径为1,从而外接球表面积为.
故选:C.
【答案点睛】
本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.
8、A
【答案解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.
【题目详解】
五人分成四组,先选出两人组成一组,剩下的人各自成一组,
所有可能的分组共有种,
甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,
故甲和乙恰好在同一组的概率是.
故选:A.
【答案点睛】
本题考查组合的应用和概率的计算,属于基础题.
9、A
【答案解析】
由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,
从而得出的最大值.
【题目详解】
因为,
则,即
整理得,令,
设,
则,
令,则,令,则,
故在上单调递增,在上单调递减,则,
因为,,
由题可知:时,则,所以,
所以,
当无限接近时,满足条件,所以,
所以要使得
故当时,可有,
故,即,
所以:最大值为5.
故选:A.
【答案点睛】
本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.
10、D
【答案解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.
【题目详解】
设等比数列公比为,由已知,,即,
解得或(舍),又,所以,
即,故,所以
,当且仅当时,等号成立.
故选:D.
【答案点睛】
本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.
11、B
【答案解析】
根据抛物线定义得,即可解得结果.
【题目详解】
因为,所以.
故选B
【答案点睛】
本题考查抛物线定义,考查基本分析求解能力,属基础题.
12、B
【答案解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.
【题目详解】
设底面边长为,则斜高为,即此四棱锥的高为,
所以此四棱锥体积为,
令,
令,
易知函数在时取得最大值.
故此时底面棱长.
故答案为:.
【答案点睛】
本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.
14、.
【答案解析】
配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.
【题目详解】
,顶点为
因为函数的值域是,
令,可得或.
又因为函数图象的对称轴为,
且,所以的取值范围为.
故答案为:.
【答案点睛】
本题考查函数值域,考查数形结合思想,属于基础题.
15、②③
【答案解析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为
,故④不正确.综上,说法正确的序号是②③.
16、
【答案解析】
利用等体积法求解点到平面的距离
【题目详解】
由题在长方体中,,
,
所以,所以,
设点到平面的距离为
,解得
故答案为:
【答案点睛】
此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2).
【答案解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.
试题解析:(Ⅰ) 平面平面
因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.
(Ⅱ)如图,
以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则
取,则为面法向量.
设为面的法向量,则,
即,取,则
依题意,则.于是.
设直线与平面所成角为,则
即直线与平面所成角的正弦值为.
18、(1)(2)证明见解析(3)证明见解析
【答案解析】
(1)由