分享
2023年高三物理模型组合讲解带电粒子在电场中的运动模型doc高中物理.docx
下载文档

ID:1334483

大小:105.21KB

页数:3页

格式:DOCX

时间:2023-04-20

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年高 物理 模型 组合 讲解 带电 粒子 电场 中的 运动 doc 高中物理
2023高三物理模型组合讲解——带电粒子在电场中的运动模型 徐征田 [模型概述] 带电粒子在电场中的运动也是每年高考中的热点问题,具体来讲有电场对带电粒子的加速(减速),涉及内容有力、能、电、图象等各局部知识,主要考查学生的综合能力。 [模型讲解] 例. 在与x轴平行的匀强电场中,一带电量为、质量为的物体在光滑水平面上沿着x轴做直线运动,其位移与时间的关系是,式中x以米为单位,t的单位为秒。从开始运动到5s末物体所经过的路程为________m,克服电场力所做的功为________J。 解析:由位移的关系式可知。 ,所以,即物体沿x轴方向做匀减速直线运动 设从开始运动到速度为零的时间为,那么 故, 第5s内物体开始反向以的加速度做匀加速直线运动 因此开始5s内的路程为,5s末的速度 克服电场力做功 点评:解答此题的关键是从位移与时间的关系式中找出物体的初速度和加速度,分析出物体运动4s速度减为零并反向运动,弄清位移与路程的联系和区别。 [模型要点] 力和运动的关系——牛顿第二定律 根据带电粒子受到的力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等物理量。这条思路通常适用于受恒力作用下的匀变速曲线运动。 功和能的关系——动能定理 根据力对带电粒子所做的功W及动能定理,从带电粒子运动的全过程中能的转化角度,研究带电粒子的速度变化、经历的位移等,这条思路通常适用于非均匀或均匀变化的磁场,特别适用于非均匀变化的磁场。 在讨论带电粒子的加速偏转时,对于根本粒子,如电子、质子、中子等,没有特殊说明,其重力一般不计;带电粒子如液滴、尘埃、颗粒等没有特殊说明,其重力一般不能忽略。 [误区点拨] 一般情况下带电粒子所受的电场力远大于重力,所以可以认为只有电场力做功。由动能定理,此式与电场是否匀强无关,与带电粒子的运动性质、轨迹形状也无关。 [模型演练] 如图1所示,A、B两块金属板水平放置,相距,两板间加有一周期性变化的电压,当B板接地时,A板电势随时间t变化的情况如图2所示。在两板间的电场中,将一带负电的粒子从B板中央处由静止释放,假设该带电粒子受到的电场力为重力的两倍,要使该粒子能够到达A板,交变电压的周期至少为多大。(g取) 图1 图2 解析:设电场力为F,那么,得 前半周期上升高度:,后半周期先减速上升,后加速下降,其加速度: 得 减速时间为那么, 此段时间内上升高度: 那么上升的总高度: 后半周期的时间内,粒子向下加速运动,下降的高度: 上述计算说明,在一个周期内上升,再回落,且具有向下的速度。 如果周期小,粒子不能到达A板。设周期为T,上升的高度那么: ,。 ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u ks5u

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开