分享
2023学年黑龙江省鸡西市一中高三(最后冲刺)数学试卷(含解析).doc
下载文档

ID:13341

大小:2.06MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 黑龙江省 鸡西市 一中 最后 冲刺 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则= ( ) A. B.1 C. D.2 2.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线. 给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是( ) A.①③ B.②④ C.①②③ D.②③④ 3.已知为锐角,且,则等于( ) A. B. C. D. 4.设为等差数列的前项和,若,则 A. B. C. D. 5.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是( ) A. B. C. D. 6.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( ) A.国防大学,研究生 B.国防大学,博士 C.军事科学院,学士 D.国防科技大学,研究生 7.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( ) A. B. C. D. 8.下列结论中正确的个数是( ) ①已知函数是一次函数,若数列通项公式为,则该数列是等差数列; ②若直线上有两个不同的点到平面的距离相等,则; ③在中,“”是“”的必要不充分条件; ④若,则的最大值为2. A.1 B.2 C.3 D.0 9.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( ) A. B. C. D. 10.记单调递增的等比数列的前项和为,若,,则( ) A. B. C. D. 11.等差数列中,已知,且,则数列的前项和中最小的是( ) A.或 B. C. D. 12.已知函,,则的最小值为( ) A. B.1 C.0 D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点.已知以为直径的圆被直线所截得的弦长为,则点的坐标__________. 14.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________. 15.已知数列满足对任意,,则数列的通项公式__________. 16.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数 (1)若,试讨论的单调性; (2)若,实数为方程的两不等实根,求证:. 18.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD. (1)证明:平面PNB; (2)问棱PA上是否存在一点E,使平面DEM,求的值 19.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下: 甲公司员工:410,390,330,360,320,400,330,340,370,350 乙公司员工:360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元. (1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 20.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (1)若直线l与曲线C相交于A、B两点,且,试求实数m值. (2)设为曲线上任意一点,求的取值范围. 21.(12分)已知函数,. (1)证明:函数的极小值点为1; (2)若函数在有两个零点,证明:. 22.(10分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点. (1)求证:平面; (2)若,求直线与平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 由题意或4,则,故选B. 2、B 【答案解析】 利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④. 【题目详解】 , 解得(当且仅当时取等号),则②正确; 将和联立,解得, 即圆与曲线C相切于点,,,, 则①和③都错误;由,得④正确. 故选:B. 【答案点睛】 本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题. 3、C 【答案解析】 由可得,再利用计算即可. 【题目详解】 因为,,所以, 所以. 故选:C. 【答案点睛】 本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 4、C 【答案解析】 根据等差数列的性质可得,即, 所以,故选C. 5、A 【答案解析】 根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解. 【题目详解】 如图所示: 设,,,则, 化简得, 当点到(轴)距离最大时,的面积最大, ∴面积的最大值是. 故选:A. 【答案点睛】 本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题. 6、C 【答案解析】 根据①③可判断丙的院校;由②和⑤可判断丙的学位. 【题目详解】 由题意①甲不是军事科学院的,③乙不是军事科学院的; 则丙来自军事科学院; 由②来自军事科学院的不是博士,则丙不是博士; 由⑤国防科技大学的是研究生,可知丙不是研究生, 故丙为学士. 综上可知,丙来自军事科学院,学位是学士. 故选:C. 【答案点睛】 本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题. 7、A 【答案解析】 分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论. 解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为. 图钉落在黄色图形内的概率为. 落在黄色图形内的图钉数大约为. 故选:A. 点睛:应用几何概型求概率的方法 建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型; (3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型. 8、B 【答案解析】 根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可; 【题目详解】 解:①已知函数是一次函数,若数列的通项公式为, 可得为一次项系数),则该数列是等差数列,故①正确; ②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误; ③在中,,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误; ④若,则,所以,当且仅当时取等号,故④正确; 综上可得正确的有①④共2个; 故选:B 【答案点睛】 本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题. 9、D 【答案解析】 设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积. 【题目详解】 设圆柱的底面半径为,则其母线长为, 因为圆柱的表面积公式为, 所以,解得, 因为圆柱的体积公式为, 所以, 由题知,圆柱内切球的体积是圆柱体积的, 所以所求圆柱内切球的体积为 . 故选:D 【答案点睛】 本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题. 10、C 【答案解析】 先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项. 【题目详解】 因为为等比数列,所以,故即, 由可得或,因为为递增数列,故符合. 此时,所以或(舍,因为为递增数列). 故,. 故选C. 【答案点睛】 一般地,如果为等比数列,为其前项和,则有性质: (1)若,则; (2)公比时,则有,其中为常数且; (3) 为等比数列( )且公比为. 11、C 【答案解析】 设公差为,则由题意可得,解得,可得.令 ,可得 当时,,当时,,由此可得数列前项和中最小的. 【题目详解】 解:等差数列中,已知,且,设公差为, 则,解得 , . 令 ,可得,故当时,,当时,, 故数列前项和中最小的是. 故选:C. 【答案点睛】 本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题. 12、B 【答案解析】

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开