温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
嘉定
中等
四校高三
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,则在上不单调的一个充分不必要条件可以是( )
A. B. C.或 D.
2.下列函数中,既是奇函数,又在上是增函数的是( ).
A. B.
C. D.
3. 若x,y满足约束条件的取值范围是
A.[0,6] B.[0,4] C.[6, D.[4,
4.在三棱锥中,,,则三棱锥外接球的表面积是( )
A. B. C. D.
5.使得的展开式中含有常数项的最小的n为( )
A. B. C. D.
6.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )
A. B. C. D.
7.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )
A. B. C. D.
8.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=( )
A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}
9.如果,那么下列不等式成立的是( )
A. B.
C. D.
10.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )
A.58厘米 B.63厘米 C.69厘米 D.76厘米
11.的展开式中的系数为( )
A. B. C. D.
12.已知数列,,,…,是首项为8,公比为得等比数列,则等于( )
A.64 B.32 C.2 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为________.
14.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.
15.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.
16.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,且.
(1)请给出的一组值,使得成立;
(2)证明不等式恒成立.
18.(12分)已知函数,,若存在实数使成立,求实数的取值范围.
19.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
20.(12分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的普通方程;
(2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.
21.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).
(1)请分别写出、、的表达式;
(2)试确定使用哪种运输工具总费用最省.
22.(10分)若函数在处有极值,且,则称为函数的“F点”.
(1)设函数().
①当时,求函数的极值;
②若函数存在“F点”,求k的值;
(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.
【题目详解】
,
若在上不单调,令,
则函数对称轴方程为
在区间上有零点(可以用二分法求得).
当时,显然不成立;
当时,只需
或,解得或.
故选:D.
【答案点睛】
本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.
2、B
【答案解析】
奇函数满足定义域关于原点对称且,在上即可.
【题目详解】
A:因为定义域为,所以不可能时奇函数,错误;
B:定义域关于原点对称,且
满足奇函数,又,所以在上,正确;
C:定义域关于原点对称,且
满足奇函数,,在上,因为,所以在上不是增函数,错误;
D:定义域关于原点对称,且,
满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;
故选:B
【答案点睛】
此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.
3、D
【答案解析】
解:x、y满足约束条件,表示的可行域如图:
目标函数z=x+2y经过C点时,函数取得最小值,
由解得C(2,1),
目标函数的最小值为:4
目标函数的范围是[4,+∞).
故选D.
4、B
【答案解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.
【题目详解】
取的中点,连接、,
由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.
设球心为,和的中心分别为、.
由球的性质可知:平面,平面,
又,由勾股定理得.
所以外接球半径为.
所以外接球的表面积为.
故选:B.
【答案点睛】
本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.
5、B
【答案解析】
二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B
【考点定位】本题考查二项式定理的应用.
6、D
【答案解析】
利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.
【题目详解】
取的中点,则由得,
即;
在中,为的中位线,
所以,
所以;
由双曲线定义知,且,所以,
解得,
故选:D
【答案点睛】
本题综合考查向量运算与双曲线的相关性质,难度一般.
7、A
【答案解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.
【题目详解】
作于,于.
因为平面平面,平面.故,
故平面.故二面角为.
又直线与平面所成角为,因为,
故.故,当且仅当重合时取等号.
又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.
故.
故选:A
【答案点睛】
本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.
8、D
【答案解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.
【题目详解】
因为集合
,
故选:D.
【答案点睛】
本题考查集合的交集运算,属于基础题.
9、D
【答案解析】
利用函数的单调性、不等式的基本性质即可得出.
【题目详解】
∵,∴,,,.
故选:D.
【答案点睛】
本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.
10、B
【答案解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.
【题目详解】
因为弧长比较短的情况下分成6等分,
所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,
故导线长度约为63(厘米).
故选:B.
【答案点睛】
本题主要考查了扇形弧长的计算,属于容易题.
11、C
【答案解析】
由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.
点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.
12、A
【答案解析】
根据题意依次计算得到答案.
【题目详解】
根据题意知:,,故,,.
故选:.
【答案点睛】
本题考查了数列值的计算,意在考查学生的计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.
【题目详解】
一次随机抽取其中的三张,所有基本事件为:
1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,
其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,
因此“抽取的三张卡片编号之和是偶数”的概率为:.
故答案为:.
【答案点睛】
本题考查了古典概型及其概率计算公式,属于基础题.
14、
【答案解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.
【题目详解】
以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,
所以,所以,
,
则,
则
,
当时,,则单调递减,当时,,则单调递增,
所以当时,最短,此时.
故答案为:
【答案点睛】
本题考查导数的实际应用,属于中档题.
15、
【答案解析】
由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.
【题目详解】
解:因为是偶函数,所以时恒有,即,
所以,
所以,解得,,;
所以;
由,即,解得;
故,.
由,即,解得.
故,.
因为,所以