温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
普陀区
上海
师大附中
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,则下列不等式正确的是( )
A. B.
C. D.
2.已知,则下列说法中正确的是( )
A.是假命题 B.是真命题
C.是真命题 D.是假命题
3.设,,则( )
A. B. C. D.
4.已知复数满足,则的最大值为( )
A. B. C. D.6
5.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )
A. B. C. D.
6.已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )
A. B. C. D.
7.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( )
A.若,,,则
B.若,,,则
C.若,,,则
D.若,,,则
8.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )
A. B. C. D.
9.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l ⊥m,l ⊥n,则
( )
A.α∥β且∥α B.α⊥β且⊥β
C.α与β相交,且交线垂直于 D.α与β相交,且交线平行于
10.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )
A.6里 B.12里 C.24里 D.48里
11.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
12.某几何体的三视图如图所示,则该几何体的体积是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知在等差数列中,,,前n项和为,则________.
14.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.
15.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____
16.在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.
18.(12分)已知首项为2的数列满足.
(1)证明:数列是等差数列.
(2)令,求数列的前项和.
19.(12分)在中,角的对边分别为,且.
(1)求角的大小;
(2)已知外接圆半径,求的周长.
20.(12分)中的内角,,的对边分别是,,,若,.
(1)求;
(2)若,点为边上一点,且,求的面积.
21.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.
(1)求角A的值;
(2)若,设角,周长为y,求的最大值.
22.(10分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.
(1)求曲线的标准方程;
(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.
【题目详解】
已知,赋值法讨论的情况:
(1)当时,令,,则,,排除B、C选项;
(2)当时,令,,则,排除A选项.
故选:D.
【答案点睛】
比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.
2、D
【答案解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.
【题目详解】
当时,故命题为假命题;
记f(x)=ex﹣x的导数为f′(x)=ex,
易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,
∴f(x)>f(0)=1>0,即,故命题为真命题;
∴是假命题
故选D
【答案点睛】
本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.
3、D
【答案解析】
集合是一次不等式的解集,分别求出再求交集即可
【题目详解】
,
,
则
故选
【答案点睛】
本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.
4、B
【答案解析】
设,,利用复数几何意义计算.
【题目详解】
设,由已知,,所以点在单位圆上,
而,表示点
到的距离,故.
故选:B.
【答案点睛】
本题考查求复数模的最大值,其实本题可以利用不等式来解决.
5、D
【答案解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.
【题目详解】
3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.
故选:D.
【答案点睛】
本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.
6、A
【答案解析】
先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.
【题目详解】
当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.
在同一直角坐标系内画出函数和的图象如下图的所示:
利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.
故选:A
【答案点睛】
本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.
7、D
【答案解析】
试题分析:,,故选D.
考点:点线面的位置关系.
8、B
【答案解析】
根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.
【题目详解】
正方体的面对角线长为,又水的体积是正方体体积的一半,
且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,
所以容器里水面的最大高度为面对角线长的一半,
即最大水面高度为,故选B.
【答案点睛】
本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.
9、D
【答案解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.
考点:平面与平面的位置关系,平面的基本性质及其推论.
10、C
【答案解析】
设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程.
【题目详解】
设第一天走里,则是以为首项,以为公比的等比数列,
由题意得:,
解得(里,
(里.
故选:C.
【答案点睛】
本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
11、D
【答案解析】
由折线图逐项分析即可求解
【题目详解】
选项,显然正确;
对于,,选项正确;
1.6,1.9,2.2,2.5,2.9不是等差数列,故错.
故选:D
【答案点睛】
本题考查统计的知识,考查数据处理能力和应用意识,是基础题
12、A
【答案解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。
【题目详解】
设半圆柱体体积为,半球体体积为,由题得几何体体积为
,故选A。
【答案点睛】
本题通过三视图考察空间识图的能力,属于基础题。
二、填空题:本题共4小题,每小题5分,共20分。
13、39
【答案解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.
【题目详解】
设等差数列公差为d,首项为,根据题意可得,解得,所以.
故答案为:39
【答案点睛】
本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.
14、
【答案解析】
由题意容积,求导研究单调性,分析即得解.
【题目详解】
由题意:容积,,
则,
由得或(舍去),
令
则为V在定义域内唯一的极大值点也是最大值点,此时.
故答案为:
【答案点睛】
本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.
15、
【答案解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.
【题目详解】
解:双曲线的左右焦点分别关于两条渐近线的对称点重合,
一条渐近线的斜率为1,即,
,,
故答案为:.
【答案点睛】
本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.
16、
【答案解析】
结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可
【题目详解】
等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有
由知,因此.
故答案为:
【答案点睛】
本题考查由三角函数图像求解解析式,数形结合思想,属于中档题
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)
【答案解析】
(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;
(2)设,,由,即可求出,则计算可得;
【题目详解】
解:(1)圆的参数方程(为参数)可化为,
∴,即圆的极坐标方程为.
(2)设,由,解得.
设,由,解得.
∵,∴.
【答案点睛】
本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.
18、(1)见解析;(2)
【答案解析】
(1)由原式可得,等式两端同时除以,可得到,即可证明结论;
(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.
【题目详解】
(