温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西省
铜川市
重点中学
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
2.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )
A. B.
C. D.
3.已知各项都为正的等差数列中,,若,,成等比数列,则( )
A. B. C. D.
4.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为( )
A. B. C. D.
5.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )
A.3 B.4 C.5 D.6
6.已知复数,则的共轭复数在复平面对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.已知集合,则=
A. B. C. D.
8.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为
A. B.
C.2 D.
9.已知集合,,则集合子集的个数为( )
A. B. C. D.
10.已知随机变量的分布列是
则( )
A. B. C. D.
11.双曲线的渐近线方程为( )
A. B. C. D.
12.设复数满足,在复平面内对应的点为,则不可能为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,直线是曲线在处的切线,则________.
14.设全集,集合,,则集合______.
15.设,则______.
16.若,则的展开式中含的项的系数为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
18.(12分)已知函数 .
(1)若在 处导数相等,证明: ;
(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.
19.(12分)已知,,函数的最小值为.
(1)求证:;
(2)若恒成立,求实数的最大值.
20.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.
(1)证明:平面PNB;
(2)问棱PA上是否存在一点E,使平面DEM,求的值
21.(12分)已知函数,曲线在点处的切线方程为.
(Ⅰ)求,的值;
(Ⅱ)若,求证:对于任意,.
22.(10分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.
(1)求证:平面;
(2)求证:平面.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【题目详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,
∴
又当时,令,则,即,
∴
综上所述,的取值范围为.
故选C.
【答案点睛】
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
2、A
【答案解析】
分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.
详解:根据题意有,如果交换一个球,
有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,
红球的个数就会出现三种情况;
如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,
对应的红球的个数就是五种情况,所以分析可以求得,故选A.
点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.
3、A
【答案解析】
试题分析:设公差为
或(舍),故选A.
考点:等差数列及其性质.
4、D
【答案解析】
由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.
【题目详解】
如图;设AB的中点为D;
∵PA,PB,AB=4,
∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;
设外接球球心为O;
∵CA=CB,面PAB⊥面ABC,
∴CD⊥AB可得CD⊥面PAB;且DC.
∴O在CD上;
故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;
∴球O的表面积为:4πR2=4π.
故选:D.
【答案点睛】
本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.
5、B
【答案解析】
通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.
【题目详解】
“正面朝南”“正面朝北”分别用“∧”“∨”表示,
利用列举法,可得下表,
原始状态
第1次“向后转”
第2次“向后转”
第3次“向后转”
第4次“向后转”
∧∧∧∧
∧∨∨∨
∨∨∧∧
∧∧∧∨
∨∨∨∨
可知需要的次数为4次.
故选:B.
【答案点睛】
本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.
6、C
【答案解析】
分析:根据复数的运算,求得复数,再利用复数的表示,即可得到复数对应的点,得到答案.
详解:由题意,复数,则
所以复数在复平面内对应的点的坐标为,位于复平面内的第三象限,故选C.
点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数是解答的关键,着重考查了推理与运算能力.
7、C
【答案解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【题目详解】
由题意得,,则
.故选C.
【答案点睛】
不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
8、A
【答案解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.
【题目详解】
设与轴交于点,由对称性可知轴,
又,为以为直径的圆的半径,
为圆心.
,又点在圆上,
,即.
,故选A.
【答案点睛】
本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.
9、B
【答案解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.
【题目详解】
解:,,
,
子集的个数为.
故选:.
【答案点睛】
考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.
10、C
【答案解析】
利用分布列求出,求出期望,再利用期望的性质可求得结果.
【题目详解】
由分布列的性质可得,得,所以,,
因此,.
故选:C.
【答案点睛】
本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.
11、C
【答案解析】
根据双曲线的标准方程,即可写出渐近线方程.
【题目详解】
双曲线,
双曲线的渐近线方程为,
故选:C
【答案点睛】
本题主要考查了双曲线的简单几何性质,属于容易题.
12、D
【答案解析】
依题意,设,由,得,再一一验证.
【题目详解】
设,
因为,
所以,
经验证不满足,
故选:D.
【答案点睛】
本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、.
【答案解析】
求出切线的斜率,即可求出结论.
【题目详解】
由图可知直线过点,
可求出直线的斜率,
由导数的几何意义可知,.
故答案为:.
【答案点睛】
本题考查导数与曲线的切线的几何意义,属于基础题.
14、
【答案解析】
分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.
【题目详解】
由题可知,集合A中
集合B的补集,则
故答案为:
【答案点睛】
本题考查集合的交集与补集运算,属于基础题.
15、121
【答案解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.
【题目详解】
令,得,令,得,两式相加,得,所以.
故答案为:.
【答案点睛】
本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.
16、
【答案解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.
【题目详解】
,
根据二项式展开式通项:,
令,解得,
所以含的项的系数.
故答案为:
【答案点睛】
本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.