温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陇南
重点中学
高三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,若对任意,都有成立,则实数的取值范围是( )
A. B. C. D.
2.定义在上的函数满足,则()
A.-1 B.0 C.1 D.2
3.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:
卦名
符号
表示的二进制数
表示的十进制数
坤
000
0
震
001
1
坎
010
2
兑
011
3
依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )
A.18 B.17 C.16 D.15
4.在三棱锥中,,,则三棱锥外接球的表面积是( )
A. B. C. D.
5.设,,分别是中,,所对边的边长,则直线与的位置关系是( )
A.平行 B.重合
C.垂直 D.相交但不垂直
6.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为( )
A.f(x)=sin(2x+) B.f(x)=sin(2x-)
C.f(x)=sin(2x+) D.f(x)=sin(2x-)
7.已知集合,则( )
A. B.
C. D.
8.下列四个图象可能是函数图象的是( )
A. B. C. D.
9. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )
A.56383 B.57171 C.59189 D.61242
10.已知集合,则的值域为( )
A. B. C. D.
11.若x,y满足约束条件且的最大值为,则a的取值范围是( )
A. B. C. D.
12.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则( )
A.9 B.5 C.2或9 D.1或5
二、填空题:本题共4小题,每小题5分,共20分。
13.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.
14.已知函数若关于的不等式的解集是,则的值为_____.
15.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.
16.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
18.(12分)已知点为椭圆上任意一点,直线与圆 交于,两点,点为椭圆的左焦点.
(1)求证:直线与椭圆相切;
(2)判断是否为定值,并说明理由.
19.(12分)已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
20.(12分)在四棱柱中,底面为正方形,,平面.
(1)证明:平面;
(2)若,求二面角的余弦值.
21.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(1)求cosC的值;
(2)若a=3,c,求△ABC的面积.
22.(10分)已知函数,其中为实常数.
(1)若存在,使得在区间内单调递减,求的取值范围;
(2)当时,设直线与函数的图象相交于不同的两点,,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
先将所求问题转化为对任意恒成立,即得图象恒在函数
图象的上方,再利用数形结合即可解决.
【题目详解】
由得,由题意函数得图象恒在函数图象的上方,
作出函数的图象如图所示
过原点作函数的切线,设切点为,则,解得,所以切
线斜率为,所以,解得.
故选:D.
【答案点睛】
本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.
2、C
【答案解析】
推导出,由此能求出的值.
【题目详解】
∵定义在上的函数满足,
∴,故选C.
【答案点睛】
本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.
3、B
【答案解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.
【题目详解】
由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.
故选:B.
【答案点睛】
本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.
4、B
【答案解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.
【题目详解】
取的中点,连接、,
由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.
设球心为,和的中心分别为、.
由球的性质可知:平面,平面,
又,由勾股定理得.
所以外接球半径为.
所以外接球的表面积为.
故选:B.
【答案点睛】
本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.
5、C
【答案解析】
试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直
考点:直线与直线的位置关系
6、D
【答案解析】
由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条件的的值,即可求得答案.
【题目详解】
分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.
详解:因为函数的最小正周期是,
所以,解得,所以,
将该函数的图像向右平移个单位后,
得到图像所对应的函数解析式为,
由此函数图像关于直线对称,得:
,即,
取,得,满足,
所以函数的解析式为,故选D.
【答案点睛】
本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.
7、C
【答案解析】
由题意和交集的运算直接求出.
【题目详解】
∵ 集合,
∴.
故选:C.
【答案点睛】
本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.
8、C
【答案解析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.
【题目详解】
∵的定义域为,
其图象可由的图象沿轴向左平移1个单位而得到,
∵为奇函数,图象关于原点对称,
∴的图象关于点成中心对称.
可排除A、D项.
当时,,∴B项不正确.
故选:C
【答案点睛】
本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.
9、C
【答案解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.
【题目详解】
被5除余3且被7除余2的正整数构成首项为23,
公差为的等差数列,记数列
则
令,解得.
故该数列各项之和为.
故选:C.
【答案点睛】
本题考查等差数列的应用,属基础题。
10、A
【答案解析】
先求出集合,化简=,令,得由二次函数的性质即可得值域.
【题目详解】
由,得 ,,令, ,,所以得 , 在 上递增,在上递减, ,所以,即 的值域为
故选A
【答案点睛】
本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题
11、A
【答案解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.
【题目详解】
作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.
故选:A
【答案点睛】
本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
12、B
【答案解析】
根据渐近线方程求得,再利用双曲线定义即可求得.
【题目详解】
由于,所以,
又且,
故选:B.
【答案点睛】
本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,, 由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.
【题目详解】
在等边三角形中,取的中点,设等边三角形的中心为,
连接.由,得,,
由已知可得是以为斜边的等腰直角三角形,,
又由已知可得平面平面,平面,,
,所以,为三棱锥外接球的球心,外接球半径,
三棱锥外接球的表面积为.
故答案为:
【答案点睛】
本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.
14、
【答案解析】
根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.
【题目详解】
解:因为函数,
关于的不等式的解集是
的两根为:和;
所以有:且;
且;
;
故答案为:
【答案点睛】
本题主要考查了不等式的解集与参数之间的关系,属于基础题.
15、
【答案解析】
由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.
【题目详解】
由的展开式中只有第六项的二项式系数最大,
所以展开式中共有11项,所以;
令,可求得展开式中各项的系数和是:
.
故答案为:1.
【答案点睛】
本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.
16、
【答案解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.
【题