温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西
汉中市
区县
第一次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数满足,则(其中为虚数单位)的最大值为( )
A.1 B.2 C.3 D.4
2.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是( )
A. B. C. D.
3.如图是二次函数的部分图象,则函数的零点所在的区间是( )
A. B. C. D.
4.若集合,,则下列结论正确的是( )
A. B. C. D.
5.已知定义在上的奇函数满足,且当时,,则( )
A.1 B.-1 C.2 D.-2
6.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )
A. B. C. D.
7.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )
A. B. C. D.
8.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为
A.或11 B.或11 C. D.
9.已知命题:R,;命题 :R,,则下列命题中为真命题的是( )
A. B. C. D.
10.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )
A. B. C. D.
11.已知平面和直线a,b,则下列命题正确的是( )
A.若∥,b∥,则∥ B.若,,则∥
C.若∥,,则 D.若,b∥,则
12.已知复数,为的共轭复数,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.
14.在中,角,,的对边分别为,,.若;且,则周长的范围为__________.
15.抛物线的焦点到准线的距离为 .
16.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
18.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)设点,直线与曲线相交于,,求的值.
20.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.
(1)求的值:
(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.
21.(12分)已知函数
(1)若函数有且只有一个零点,求实数的取值范围;
(2)若函数对恒成立,求实数的取值范围.
22.(10分)已知,函数的最小值为1.
(1)证明:.
(2)若恒成立,求实数的最大值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.
【题目详解】
由知,复数对应的点在以原点为圆心,1为半径的圆上,
表示复数对应的点与点间的距离,
又复数对应的点所在圆的圆心到的距离为1,
所以.
故选:B
【答案点睛】
本题考查了复数模的定义及其几何意义应用,属于基础题.
2、A
【答案解析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.
【题目详解】
当时,,
当时,,
当时,,
当时,,
若有且仅有3个零点,
则等价为有且仅有3个根,
即与有三个不同的交点,
作出函数和的图象如图,
当a=1时,与有无数多个交点,
当直线经过点时,即,时,与有两个交点,
当直线经过点时,即时,与有三个交点,
要使与有三个不同的交点,则直线处在过和之间,
即,
故选:A.
【答案点睛】
利用函数零点的情况求参数值或取值范围的方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
3、B
【答案解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.
【题目详解】
∵,结合函数的图象可知,
二次函数的对称轴为,,
,∵,
所以在上单调递增.
又因为,
所以函数的零点所在的区间是.
故选:B.
【答案点睛】
本题考查二次函数的图象及函数的零点,属于基础题.
4、D
【答案解析】
由题意,分析即得解
【题目详解】
由题意,故,
故选:D
【答案点睛】
本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.
5、B
【答案解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.
【题目详解】
∵是定义在R上的奇函数,且;
∴;
∴;
∴的周期为4;
∵时,;
∴由奇函数性质可得;
∴;
∴时,;
∴.
故选:B.
【答案点睛】
本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.
6、B
【答案解析】
根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.
【题目详解】
由题可知:
分别从3名男生、3名女生中选2人 :
将选中2名女生平均分为两组:
将选中2名男生平均分为两组:
则选出的人分成两队混合双打的总数为:
和分在一组的数目为
所以所求的概率为
故选:B
【答案点睛】
本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.
7、C
【答案解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.
【题目详解】
由几何体的三视图可得,
几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,
故此几何体的体积为圆柱的体积减去三棱柱的体积,
即,
故选C.
【答案点睛】
本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.
8、A
【答案解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.
9、B
【答案解析】
根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.
【题目详解】
对命题:
可知,
所以R,
故命题为假命题
命题 :
取,可知
所以R,
故命题为真命题
所以为真命题
故选:B
【答案点睛】
本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.
10、A
【答案解析】
根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.
【题目详解】
解:由双曲线可知,焦点在轴上,
则双曲线的渐近线方程为:,
由于焦距是虚轴长的2倍,可得:,
∴,
即:,,
所以双曲线的渐近线方程为:.
故选:A.
【答案点睛】
本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.
11、C
【答案解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.
【题目详解】
A:当时,也可以满足∥,b∥,故本命题不正确;
B:当时,也可以满足,,故本命题不正确;
C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;
D:当时,也可以满足,b∥,故本命题不正确.
故选:C
【答案点睛】
本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.
12、C
【答案解析】
求出,直接由复数的代数形式的乘除运算化简复数.
【题目详解】
.
故选:C
【答案点睛】
本题考查复数的代数形式的四则运算,共轭复数,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.
【题目详解】
设圆的半径为,由题意可得,所以,
由题意设圆心,由题意可得,
由直线与圆相切可得,所以,
而,,所以,即,解得,
所以的最大值为2,当且仅当时取等号,可得,
所以圆心坐标为:,半径为,
所以圆的标准方程为:.
故答案为:.
【答案点睛】
本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.
14、
【答案解析】
先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.
【题目详解】
解:
所以三角形周长
故答案为:
【答案点睛】
考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.
15、
【答案解析】
试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.
考点:抛物线的性质.
16、
【答案解析】
对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.
【题目详解】
①若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,
此时,符号条件的位自然数个数为个;
②若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,
此时,符合条件的位自然数个数为个.
综上所述,符合条件的位自然数个数为个.
故答案为:.
【答案点睛】
本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.
三、解答题:共7