分享
2023学年贵州省铜仁市重点中学高三第六次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 贵州省 铜仁 重点中学 第六 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合,,则中元素的个数为( ) A.3 B.2 C.1 D.0 2.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是( ) A.0 B.1 C.2 D.3 3.设集合(为实数集),,,则( ) A. B. C. D. 4.已知,,,则,,的大小关系为( ) A. B. C. D. 5.已知向量,,当时,( ) A. B. C. D. 6.已知集合,,则=( ) A. B. C. D. 7.等比数列的各项均为正数,且,则( ) A.12 B.10 C.8 D. 8.函数的定义域为,集合,则( ) A. B. C. D. 9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( ) A. B. C. D. 10.已知非零向量满足,,且与的夹角为,则( ) A.6 B. C. D.3 11.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是(  ) A. B.2 C. D. 12.已知集合,定义集合,则等于( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____. 14.已知,且,则__________. 15.在中,已知,,则A的值是______. 16.若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆的离心率为,椭圆C的长轴长为4. (1)求椭圆C的方程; (2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由. 18.(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表: 考试情况 男学员 女学员 第1次考科目二人数 1200 800 第1次通过科目二人数 960 600 第1次未通过科目二人数 240 200 若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止. (1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率; (2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望. 19.(12分)数列满足,,其前n项和为,数列的前n项积为. (1)求和数列的通项公式; (2)设,求的前n项和,并证明:对任意的正整数m、k,均有. 20.(12分)设函数,. (1)求函数的极值; (2)对任意,都有,求实数a的取值范围. 21.(12分)已知函数,,.函数的导函数在上存在零点. 求实数的取值范围; 若存在实数,当时,函数在时取得最大值,求正实数的最大值; 若直线与曲线和都相切,且在轴上的截距为,求实数的值. 22.(10分)已知函数. (1)求不等式的解集; (2)若不等式对恒成立,求实数的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数. 【题目详解】 由题可知:集合表示半圆上的点,集合表示直线上的点, 联立与, 可得,整理得, 即, 当时,,不满足题意; 故方程组有唯一的解. 故. 故选:C. 【答案点睛】 本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题. 2、C 【答案解析】 建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数. 【题目详解】 设正方体边长为,建立空间直角坐标系如下图所示,,. ①,,所以,故①正确. ②,,不存在实数使,故不成立,故②错误. ③,,,故平面不成立,故③错误. ④,,设和成角为,则,由于,所以,故④正确. 综上所述,正确的命题有个. 故选:C 【答案点睛】 本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题. 3、A 【答案解析】 根据集合交集与补集运算,即可求得. 【题目详解】 集合,, 所以 所以 故选:A 【答案点睛】 本题考查了集合交集与补集的混合运算,属于基础题. 4、D 【答案解析】 构造函数,利用导数求得的单调区间,由此判断出的大小关系. 【题目详解】 依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D. 【答案点睛】 本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题. 5、A 【答案解析】 根据向量的坐标运算,求出,,即可求解. 【题目详解】 , . 故选:A. 【答案点睛】 本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题. 6、C 【答案解析】 计算,,再计算交集得到答案. 【题目详解】 ,,故. 故选:. 【答案点睛】 本题考查了交集运算,意在考查学生的计算能力. 7、B 【答案解析】 由等比数列的性质求得,再由对数运算法则可得结论. 【题目详解】 ∵数列是等比数列,∴,, ∴. 故选:B. 【答案点睛】 本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键. 8、A 【答案解析】 根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解. 【题目详解】 解:由函数得,解得,即; 又,解得,即, 则. 故选:A. 【答案点睛】 本题考查了交集及其运算,考查了函数定义域的求法,是基础题. 9、C 【答案解析】 作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积. 【题目详解】 如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为. 故选:C 【答案点睛】 本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定. 10、D 【答案解析】 利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【题目详解】 解:非零向量,满足,可知两个向量垂直,,且与的夹角为, 说明以向量,为邻边,为对角线的平行四边形是正方形,所以则. 故选:. 【答案点睛】 本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题. 11、A 【答案解析】 先根据已知求出原△ABC的高为AO=,再求原△ABC的面积. 【题目详解】 由题图可知原△ABC的高为AO=, ∴S△ABC=×BC×OA=×2×=,故答案为A 【答案点睛】 本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力. 12、C 【答案解析】 根据定义,求出,即可求出结论. 【题目详解】 因为集合,所以, 则,所以. 故选:C. 【答案点睛】 本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、3 【答案解析】 设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0),联立方程得到B(,),故S,令t,得S,利用均值不等式得到答案. 【题目详解】 设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0) 由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x ∵A的坐标(0,1),∴B的坐标为(,k•1),即B(,), 因此AB•, 同理可得:AC•. ∴Rt△ABC的面积为SAB•AC• 令t,得S. ∵t2,∴S△ABC. 当且仅当,即t时,△ABC的面积S有最大值为. 解之得a=3或a. ∵a时,t2不符合题意,∴a=3. 故答案为:3. 【答案点睛】 本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力. 14、 【答案解析】 试题分析:因,故,所以,,应填. 考点:三角变换及运用. 15、 【答案解析】 根据正弦定理,由可得,由可得,将代入求解即得. 【题目详解】 ,,即, ,,则, ,,,则. 故答案为: 【答案点睛】 本题考查正弦定理和二倍角的正弦公式,是基础题. 16、 【答案解析】 先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果. 【题目详解】 因为,所以, 又函数在和两处取得极值, 所以是方程的两不等实根,且, 即有两不等实根,且, 令, 则直线与曲线有两交点,且交点横坐标满足, 又, 由得, 所以,当时,,即函数在上单调递增; 当,时,,即函数在和上单调递减; 当时,由得,此时, 因此,由得. 故答案为 【答案点睛】 本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O. 【答案解析】 (1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开