温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
龙海市
中学
第二次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )
A. B. C. D.
2.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )
A.45 B.50 C.55 D.60
3.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为
A. B. C. D.
4.已知函数满足:当时,,且对任意,都有,则( )
A.0 B.1 C.-1 D.
5.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为( )
A.②③ B.②③④ C.①④ D.①②③
6.函数的大致图象是
A. B. C. D.
7.已知随机变量的分布列是
则( )
A. B. C. D.
8.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )
A.3 B. C.6 D.
9.已知函数,若,则的值等于( )
A. B. C. D.
10.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为( )
A. B.
C. D.
11.若集合,,则=( )
A. B. C. D.
12.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.
14.已知函数为偶函数,则_____.
15.已知函数,则关于的不等式的解集为_______.
16.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数是自然对数的底数.
(1)若,讨论的单调性;
(2)若有两个极值点,求的取值范围,并证明:.
18.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.
(1)求椭圆的标准方程;
(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.
(ⅰ)求面积最大值;
(ⅱ)证明:直线与斜率之积为定值.
19.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.
20.(12分)设函数.
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.
21.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.
为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.
(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)
(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;
(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间
1月25日
1月26日
1月27日
1月28日
1月29日
累计确诊人数的真实数据
1975
2744
4515
5974
7111
(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?
(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?
附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:其中,.
5.5
390
19
385
7640
31525
154700
100
150
225
338
507
22.(10分)已知不等式对于任意的恒成立.
(1)求实数m的取值范围;
(2)若m的最大值为M,且正实数a,b,c满足.求证.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.
【题目详解】
设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:
因此有,设平面的法向量为,所以有
,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.
故选:C
【答案点睛】
本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.
2、D
【答案解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.
【题目详解】
根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,
∴样本容量(即该班的学生人数)是60(人).
故选:D.
【答案点睛】
本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题
3、A
【答案解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.
【题目详解】
因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.
故选:A.
【答案点睛】
本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.
4、C
【答案解析】
由题意可知,代入函数表达式即可得解.
【题目详解】
由可知函数是周期为4的函数,
.
故选:C.
【答案点睛】
本题考查了分段函数和函数周期的应用,属于基础题.
5、C
【答案解析】
根据直线与平面,平面与平面的位置关系进行判断即可.
【题目详解】
根据面面平行的性质以及判定定理可得,若,,则,故①正确;
若,,平面可能相交,故②错误;
若,,则可能平行,故③错误;
由线面垂直的性质可得,④正确;
故选:C
【答案点睛】
本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.
6、A
【答案解析】
利用函数的对称性及函数值的符号即可作出判断.
【题目详解】
由题意可知函数为奇函数,可排除B选项;
当时,,可排除D选项;
当时,,当时,,
即,可排除C选项,
故选:A
【答案点睛】
本题考查了函数图象的判断,函数对称性的应用,属于中档题.
7、C
【答案解析】
利用分布列求出,求出期望,再利用期望的性质可求得结果.
【题目详解】
由分布列的性质可得,得,所以,,
因此,.
故选:C.
【答案点睛】
本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.
8、A
【答案解析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.
【题目详解】
由题可知:双曲线的渐近线方程为
取右焦点,一条渐近线
则点到的距离为,由
所以,则
又
所以
所以焦距为:
故选:A
【答案点睛】
本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.
9、B
【答案解析】
由函数的奇偶性可得,
【题目详解】
∵
其中为奇函数,也为奇函数
∴也为奇函数
∴
故选:B
【答案点睛】
函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数
10、C
【答案解析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.
【题目详解】
由题得 ①
又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,
所以 ②
又 ③
由①②③可得:,,
所以双曲线的标准方程为.
故选:C
【答案点睛】
本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.
11、C
【答案解析】
试题分析:化简集合
故选C.
考点:集合的运算.
12、A
【答案解析】
基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.
【题目详解】
解:从四个阴数和五个阳数中分别随机选取1个数,
基本事件总数,
其和等于11包含的基本事件有:,,,,共4个,
其和等于的概率.
故选:.
【答案点睛】
本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.
【题目详解】
解: 因为椭圆,则焦点为,
又因为椭圆与双曲线(,)有相同的焦点,
椭圆与双曲线在第一象限内的交点为,且,
在椭圆中:
由椭圆的定义:
在双曲线中: ,
所以双曲线的实轴长为: ,实半轴为
则双曲线的离心率为: .
故答案为:
【答案点睛】
本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.
14、
【