温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西省
渭南市
富平县
冲刺
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )
A. B.
C. D.
2.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于( )
A. B.2
C.3 D.6
3.在中,为中点,且,若,则( )
A. B. C. D.
4.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )
A. B.6 C. D.
5. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )
A.75 B.65 C.55 D.45
6.若复数满足,则( )
A. B. C.2 D.
7.已知函数满足,且,则不等式的解集为( )
A. B. C. D.
8.已知函数,则的值等于( )
A.2018 B.1009 C.1010 D.2020
9.设等差数列的前项和为,若,,则( )
A.21 B.22 C.11 D.12
10.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )
A.36 cm3 B.48 cm3 C.60 cm3 D.72 cm3
11.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是( )
A. B.
C. D.
12.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).
14.已知各项均为正数的等比数列的前项积为,,(且),则__________.
15.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种. (用数字作答)
16.已知函数,若在定义域内恒有,则实数的取值范围是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)设直线与曲线交于,两点,求;
(Ⅱ)若点为曲线上任意一点,求的取值范围.
18.(12分)在底面为菱形的四棱柱中,平面.
(1)证明:平面;
(2)求二面角的正弦值.
19.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.
(1)证明:平面平面ABCD;
(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.
20.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.
(1)设直线,的斜率分别为,,求证:常数;
(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;
②当的内切圆的面积为时,求直线的方程.
21.(12分)已知函数,,
(1)讨论的单调性;
(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.
22.(10分)的内角所对的边分别是,且,.
(1)求;
(2)若边上的中线,求的面积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据四个列联表中的等高条形图可知,
图中D中共享与不共享的企业经济活跃度的差异最大,
它最能体现共享经济对该部门的发展有显著效果,故选D.
2、A
【答案解析】
由圆心到渐近线的距离等于半径列方程求解即可.
【题目详解】
双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=.
答案:A
【答案点睛】
本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.
3、B
【答案解析】
选取向量,为基底,由向量线性运算,求出,即可求得结果.
【题目详解】
, ,
,
,,.
故选:B.
【答案点睛】
本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.
4、D
【答案解析】
用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.
【题目详解】
执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.
故选D.
【答案点睛】
本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.
5、B
【答案解析】
计算的和,然后除以,得到“5阶幻方”的幻和.
【题目详解】
依题意“5阶幻方”的幻和为,故选B.
【答案点睛】
本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.
6、D
【答案解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.
【题目详解】
解:由题意知,,
,
∴,
故选:D.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数模的求法.
7、B
【答案解析】
构造函数,利用导数研究函数的单调性,即可得到结论.
【题目详解】
设,则函数的导数,,,即函数为减函数,,,则不等式等价为,
则不等式的解集为,即的解为,,由得或,解得或,
故不等式的解集为.故选:.
【答案点睛】
本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.
8、C
【答案解析】
首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可.
【题目详解】
解: .
,
,
的周期为,
,, ,,
.
.
故选:C
【答案点睛】
本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.
9、A
【答案解析】
由题意知成等差数列,结合等差中项,列出方程,即可求出的值.
【题目详解】
解:由为等差数列,可知也成等差数列,
所以 ,即,解得.
故选:A.
【答案点睛】
本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.
10、B
【答案解析】
试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.
考点:三视图和几何体的体积.
11、D
【答案解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.
【题目详解】
的定义域为,,
当时,,故在单调递减;
不妨设,而,知在单调递减,
从而对任意、,恒有,
即,
,,
令,则,原不等式等价于在单调递减,即,
从而,因为,
所以实数a的取值范围是
故选:D.
【答案点睛】
此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.
12、A
【答案解析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.
【题目详解】
因为关于轴对称,所以,所以,的最小值是.,则,所以.
【答案点睛】
本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.
二、填空题:本题共4小题,每小题5分,共20分。
13、135
【答案解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.
【题目详解】
根据题意先确定2个人位置不变,共有种选择.
再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,
故不同的坐法有.
故答案为:.
【答案点睛】
本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.
14、
【答案解析】
利用等比数列的性质求得,进而求得,再利用对数运算求得的值.
【题目详解】
由于,,所以,则,∴,,.
故答案为:
【答案点睛】
本小题主要考查等比数列的性质,考查对数运算,属于基础题.
15.
【答案解析】
试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.
考点:排列、组合及简单计数问题.
点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.
16、
【答案解析】
根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.
【题目详解】
由指数函数与对数函数图象可知:,
恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,
的图象在过原点且与两函数相切的两条切线之间.
设过原点且与相切的直线与函数相切于点,
则切线斜率,解得:;
设过原点且与相切的直线与函数相切于点,
则切线斜率,解得:;
当时,,又,满足题意;
综上所述:实数的取值范围为.
【答案点睛】
本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)6(Ⅱ)
【答案解析】
(Ⅰ)化简得到直线的普通方程化为,,是以点为圆心,为半径的圆,利用垂径定理计算得到答案.
(Ⅱ)设,则,得到范围.
【题目详解】
(Ⅰ)由题意可知,直线的普通方程化为,
曲线的极坐标方程变形为,
所以的普通方程分别为,是以点为圆心,为半径的圆,
设点到直线的距离为,则, 所以.
(Ⅱ)的标准方程为,所以参数方程为(为参数),设,
,
因为,所以,
所以.
【答案点睛】
本题考查了参数方程,极坐标方程,意在考查学生的计算能力和