温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
辽宁省
大连市
普兰店
第一
中学
第三次
测评
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在区间上随机取一个数,使直线与圆相交的概率为( )
A. B. C. D.
2.若实数x,y满足条件,目标函数,则z 的最大值为( )
A. B.1 C.2 D.0
3.已知为非零向量,“”为“”的( )
A.充分不必要条件 B.充分必要条件
C.必要不充分条件 D.既不充分也不必要条件
4.设为非零实数,且,则( )
A. B. C. D.
5.若集合,,则( )
A. B. C. D.
6.若复数满足,复数的共轭复数是,则( )
A.1 B.0 C. D.
7.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )
A. B. C. D.
8.执行如图所示的程序框图,则输出的的值为( )
A. B.
C. D.
9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )
A. B. C. D.
10.的展开式中的系数是( )
A.160 B.240 C.280 D.320
11.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=( )
A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}
12.已知向量,若,则实数的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数在区间(-∞,1)上递增,则实数a的取值范围是____
14.设是等比数列的前项的和,成等差数列,则的值为_____.
15.记为数列的前项和.若,则______.
16.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)若不等式的解集为,求的值.
(2)若当时,,求的取值范围.
18.(12分)设函数.
(1)若,求实数的取值范围;
(2)证明:,恒成立.
19.(12分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若存在满足不等式,求实数的取值范围.
20.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.
年龄
(单位:岁)
保费
(单位:元)
(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;
(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?
21.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.
(Ⅰ)证明:平面;
(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.
22.(10分)已知函数.
(1)求证:当时,;
(2)若对任意存在和使成立,求实数的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.
【题目详解】
因为圆心,半径,直线与圆相交,所以
,解得
所以相交的概率,故选C.
【答案点睛】
本题主要考查了直线与圆的位置关系,几何概型,属于中档题.
2、C
【答案解析】
画出可行域和目标函数,根据平移得到最大值.
【题目详解】
若实数x,y满足条件,目标函数
如图:
当时函数取最大值为
故答案选C
【答案点睛】
求线性目标函数的最值:
当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;
当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.
3、B
【答案解析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.
【题目详解】
若成立,则,则向量与的方向相同,且,从而,所以;
若,则向量与的方向相同,且,从而,所以.
所以“”为“”的充分必要条件.
故选:B
【答案点睛】
本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.
4、C
【答案解析】
取,计算知错误,根据不等式性质知正确,得到答案.
【题目详解】
,故,,故正确;
取,计算知错误;
故选:.
【答案点睛】
本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.
5、A
【答案解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【题目详解】
解:由集合,解得,
则
故选:.
【答案点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
6、C
【答案解析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.
【题目详解】
解:∵,
∴,
则,
∴,
故选:C.
【答案点睛】
本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.
7、D
【答案解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;
【题目详解】
解:设,,由,得,
∵,解得或,∴,.
又由,得,∴或,∴,
∵,
∴,
又∵,
∴代入解得.
故选:D
【答案点睛】
本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.
8、B
【答案解析】
列出循环的每一步,进而可求得输出的值.
【题目详解】
根据程序框图,执行循环前:,,,
执行第一次循环时:,,所以:不成立.
继续进行循环,…,
当,时,成立,,
由于不成立,执行下一次循环,
,,成立,,成立,输出的的值为.
故选:B.
【答案点睛】
本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.
9、A
【答案解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.
【题目详解】
在中,,,,由余弦定理,得,
所以.
所以所求概率为.
故选A.
【答案点睛】
本题考查了几何概型的概率计算问题,是基础题.
10、C
【答案解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.
【题目详解】
由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.
故选:C
【答案点睛】
本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.
11、C
【答案解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.
【题目详解】
解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},
B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},
∴A∩B={0,1,2,3},
故选:C.
【答案点睛】
本题主要考查集合的交集运算,属于基础题.
12、D
【答案解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.
【题目详解】
解:,,即,
将和代入,得出,所以.
故选:D.
【答案点睛】
本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.
【题目详解】
由二次函数的性质和复合函数的单调性可得
解得.
故答案为:
【答案点睛】
本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.
14、2
【答案解析】
设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.
【题目详解】
解:等比数列的公比设为
成等差数列,
可得
若则
显然不成立,故
则,
化为
解得,
则
故答案为:.
【答案点睛】
本题主要考查了等比数列的基本量求解以及运用,属于中档题.
15、1
【答案解析】
由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.
【题目详解】
由,得,.
且,
则,即.
数列是以16为首项,以为公比的等比数列,
则.
故答案为:1.
【答案点睛】
本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.
16、
【答案解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.
【题目详解】
根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
所以该验证码的中间数字是7的概率为.
故答案为:
【答案点睛