分享
2023学年莱州一中高三第二次诊断性检测数学试卷(含解析).doc
下载文档

ID:13163

大小:2.52MB

页数:23页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 莱州 一中 第二次 诊断 检测 数学试卷 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为   A. B. C. D. 2.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( ) A.2对 B.3对 C.4对 D.5对 3.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种 A. B. C. D. 4.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( ) A. B. C. D. 5.已知满足,则的取值范围为( ) A. B. C. D. 6.函数与的图象上存在关于直线对称的点,则的取值范围是( ) A. B. C. D. 7.公比为2的等比数列中存在两项,,满足,则的最小值为( ) A. B. C. D. 8.已知实数满足约束条件,则的最小值是 A. B. C.1 D.4 9.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是( ) A.这20天中指数值的中位数略高于100 B.这20天中的中度污染及以上(指数)的天数占 C.该市10月的前半个月的空气质量越来越好 D.总体来说,该市10月上旬的空气质量比中旬的空气质量好 10.已知复数,则对应的点在复平面内位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 11.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为( ) A. B. C. D. 12.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________. 14.如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______. 15.如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为. (1)求关于的函数解析式; (2)当为何值时,面积为最小,政府投资最低? 16.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量. 18.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下: 满意 不满意 男 40 40 女 80 40 (1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关? (2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下: 支付方式 现金支付 购物卡支付 APP支付 频率 10% 30% 60% 优惠方式 按9折支付 按8折支付 其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付 将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望. 附表及公式:. 0.15 0.10 0.05 0.025 0.010 0.005 0.001 2.072 2.706 3.841 5.024 6.635 7.879 10.828 19.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于. (1)求证:平面平面; (2)求二面角的余弦值. 20.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点. (Ⅰ)证明:平面; (Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积. 21.(12分)已知函数的最大值为,其中. (1)求实数的值; (2)若求证:. 22.(10分)已知,,求证: (1); (2). 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值. 【题目详解】 设,,联立,得 则, 则 由,得 设,则 , 则点到直线的距离 从而 . 令 当时,;当时, 故,即的最小值为 本题正确选项: 【答案点睛】 本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值. 2、C 【答案解析】 画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案. 【题目详解】 该几何体是一个四棱锥,直观图如下图所示,易知平面平面, 作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD, 又AD⊥CD,所以,CD⊥平面PAD, 所以平面平面, 同理可证:平面平面, 由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD, 所以,AP⊥平面PCD,所以,平面平面, 所以该多面体各表面所在平面互相垂直的有4对. 【答案点睛】 本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题. 3、C 【答案解析】 在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果. 【题目详解】 两组至少都是人,则分组中两组的人数分别为、或、, 又因为名女干部不能单独成一组,则不同的派遣方案种数为. 故选:C. 【答案点睛】 本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题. 4、D 【答案解析】 利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果. 【题目详解】 《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D. 【答案点睛】 本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生. 5、C 【答案解析】 设,则的几何意义为点到点的斜率,利用数形结合即可得到结论. 【题目详解】 解:设,则的几何意义为点到点的斜率, 作出不等式组对应的平面区域如图: 由图可知当过点的直线平行于轴时,此时成立; 取所有负值都成立; 当过点时,取正值中的最小值,,此时; 故的取值范围为; 故选:C. 【答案点睛】 本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在. 6、C 【答案解析】 由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论. 【题目详解】 解:由题可知,曲线与有公共点,即方程有解, 即有解,令,则, 则当时,;当时,, 故时,取得极大值,也即为最大值, 当趋近于时,趋近于,所以满足条件. 故选:C. 【答案点睛】 本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题. 7、D 【答案解析】 根据已知条件和等比数列的通项公式,求出关系,即可求解. 【题目详解】 , 当时,,当时,, 当时,,当时,, 当时,,当时,, 最小值为. 故选:D. 【答案点睛】 本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题. 8、B 【答案解析】 作出该不等式组表示的平面区域,如下图中阴影部分所示, 设,则,易知当直线经过点时,z取得最小值, 由,解得,所以,所以,故选B. 9、C 【答案解析】 结合题意,根据题目中的天的指数值,判断选项中的命题是否正确. 【题目详解】 对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确. 对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确. 对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误. 对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确. 故选: 【答案点睛】 本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础. 10、A 【答案解析】 利用复数除法运算化简,由此求得对应点所在象限. 【题目详解】 依题意,对应点为,在第一象限. 故选A. 【答案点睛】 本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题. 11、C 【答案解析】 将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围. 【题目详解】 依题意 , 则, 当时,,故函数在上单调递增, 当时,; 而函数在上单调递减, 故, 则只需, 故,解得, 故实数的取值范围为. 故选:C. 【答案点睛】 本题考查了导数在判断函数单调性中的应用,恒成

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开