分享
2023年数学九年级上人教新课标圆全章测试题.docx
下载文档

ID:1316008

大小:30.12KB

页数:7页

格式:DOCX

时间:2023-04-19

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 数学 九年级 上人 新课 圆全 测试
圆全章测试题 一、选择题〔此题共10小题,每题3分,共30分〕 .以下判断中正确的选项是〔 〕 A.平分弦的直径垂直于弦 B.平分弦的直线也必平分弦所对的两条弧 C.弦的垂直平分线必平分弦所对的两条弧 D.平分一条弧的直线必平分这条弧所对的弦 答案:C .〔2023年海南 〕如图,AB是⊙O的直径,AC是⊙O的切线,A为切点, 连接BC,假设∠ABC=45°,那么以下结论正确的选项是〔 〕 A. AC>AB B. AC=AB C. AC<AB D. AC=BC A B O C 45° 答案:D .⊙O1与⊙O2相交与A、B两点,其半径分别为2和1,且O1A⊥O2A,那么公共弦AB的长为〔 〕 A B. C. D. 答案:B .〔2023年泰安市〕如图,在中,的度数为是上一点, 是上不同的两点〔不与两点重合〕,那么 的度数为〔 〕 A. B. C. D. A B C D E O 答案:B . I为△ABC的内心,如果∠ABC+∠ACB=100°,那么∠BIC等于( ) A.80° B.100° C.130° D.160° 答案:C .在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C为圆心,4cm长为半径作圆,那么A、B、C、D四点中,在圆内的有〔  〕 A.4个 B.3个 C.2个 D.1个 答案:C .如图,⊙O上有两点A与P,假设P点在圆上匀速运动一周,那么弦AP的长度与时间的关系可能是以以下图形中的 ① O ③ O ② O ④ O A. ① B. ③ C. ②或④ D. ①或③ 答案:D .两个同心圆的半径为 1和2,大圆的弦AB与小圆相切,那么AB为〔   〕 A. B.2 C.3 D.4 答案:B .秋千拉绳长3米,,一小朋友荡该秋千时,秋千最高处踩板离地面2米(左,右对称),那么该秋千所荡过的圆弧长为〔  〕 A. π米 B.2π米 C.π米 D. π米 答案:B .(08长春中考试题)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,那么图中阴影局部的面积是【  】 A. B. C. D. 答案:C(点拨因为该圆锥的底面直径是5cm,母线长是8cm,所以此圆锥的侧面积为×2π××8=20π(cm2)) 二、填空题〔此题共8小题,每题4分,共32分〕 .[2023年河北省]14.如图7,与相切于点,的延长线交于点, 连结.假设,那么. C O A B 答案:65° .正六边形的边长为a,那么它的内切圆面积为__________. 答案:πa2 .在中,,,AC=3. BC=4 ,以BC为轴旋转一周所得的几何体的外表 积是_______. 答案: .如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,那么圆的直径为 答案:10个单位 .如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点〔P与A,B不重合〕,连结PA,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,那么EF=   . 答案:因为OE⊥AP于E,OF⊥PB于F,所以点E与F分别是AP与PB的中点,所以EF是△APB的中位线,即EF=AB=5 .如图,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,那么图中阴影局部的面积是 。 答案: .如以下图的圆柱体中底面圆的半径是,高为2,假设一只小虫从A点出发沿着圆柱体的侧面爬行到C点,那么小虫爬行的最短路程是 .〔结果保存根号〕 D C A B 答案:点拨:如图,此时的AC△ABC中,BC=2,AB=×2π×=2,所以由勾股定理,得AC===2 D C B A .〔2023 天津〕如图①,,,,为四个等圆的圆心,A,B,C,D为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两局部,并说明这条直线经过的两个点是 ;如图②,,,,,为五个等圆的圆心,A,B,C,D,E为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两局部,并说明这条直线经过的两个点是 . D 答案:2π 提示〔利用转化思想 三、实验题〔此题共8小题,共58分〕 .〔6分〕如图,是一个直径为650mm的圆柱形输油管的横截面,假设油面宽AB=600mm,求油面的最大深度。 答案:175mm .〔6分〕如图13,某建筑工地上一钢管的横截面是圆环形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于点A,B〔AB与内圆相切于点C,其中点A在直尺的零刻度处〕.请观察图形,写出线段AB的长〔精确到1cm〕,并根据得到的数据计算该钢管的横截面积.〔结果用含π的式子表示〕 答案:AB=24cm. 连接OC,OA.∵AB与内圆相切与点C, ∴OC⊥AB. ∴AC=BC=12cm.∴横截面积为:πAO2-πOC2=π(AO2-OC2.∵在Rt△ACO中,AO2-OC2=AC2 ,∴横截面积=πAC2 (6分)=144π(cm2) . .〔6分〕如图,扇形OAB的圆心角为120°,半径为6cm. ⑴请用尺规作出扇形的对称轴(不写做法,保存作图痕迹). ⑵假设将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积. 答案:〔1〕提示:作∠AOB的角平分线,延长成为直线即可; ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ (2〕∵扇形的弧长为,∴底面的半径为, ∴圆锥的底面积为。 .〔8分〕如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D。:,。 〔1〕求作此残片所在的圆〔不写作法,保存作图痕迹〕; 〔2〕求〔1〕中所作圆的半径。 答案:〔1〕图略 〔2〕 .〔8分〕如图,要在直径为50cm的圆形木板上截出四个大小相同的圆形凳面,问怎样才能截出直径最大的凳面,最大直径是多少?〔精确到0.1cm〕 答案:截法如图,根据圆的对称性可知,O1,O3都在⊙O的直径AB上,设所截出的凳面直径为,那么x,x, ,又AB-(O1A+O3B)=50-x,所以=50,所以x=50( .〔8分〕,如以下图,A是⊙O l、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙O l、⊙O2于M、N。 求证:AM=AN. 答案:证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D, 那么OlC∥PA∥O2D,且AC= AM,AD= AN. ∵OlP= O2P , ∴AD=AM,∴AM=AN. .〔8分〕〔山西省〕如图,CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线. .〔08茂名〕如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD. 〔1〕求证:∠ADB=∠E; 〔2〕当点D运动到什么位置时,DE是⊙O的切线?请说明理由. 〔3〕当AB=5,BC=6时,求⊙O的半径. 圆全章测试题 一、选择题〔此题共10小题,每题3分,共30分〕 1.C 2.B 3.B 4.B 5.C 6.C 7.D 8.B 9.B 10.B 二、填空题〔此题共8小题,每题4分,共32分〕 11.27 12.πa2 13. 14.10个单位 15.因为OE⊥AP于E,OF⊥PB于F,所以点E与F分别是AP与PB的中点,所以EF是△APB的中位线,即EF=AB=5 16. 17.点拨:如图,此时的AC△ABC中,BC=2,AB=×2π×=2,所以由勾股定理,得AC===2 D C B A 18.,,如图① 〔提示:答案不惟一,过与交点O的任意直线都能将四个圆分成面积相等的两局部〕; ,,如图② 〔提示:答案不惟一,如,,,等均可〕. D 三、实验题〔此题共8小题,共58分〕 19.175mm 20.AB=24cm. 连接OC,OA.∵AB与内圆相切与点C, ∴OC⊥AB. ∴AC=BC=12cm.∴横截面积为:πAO2-πOC2=π(AO2-OC2.∵在Rt△ACO中,AO2-OC2=AC2 ,∴横截面积=πAC2 (6分)=144π(cm2) . 21.〔1〕提示:作∠AOB的角平分线,延长成为直线即可; ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ (2〕∵扇形的弧长为,∴底面的半径为, ∴圆锥的底面积为。 22.〔1〕图略 〔2〕 23.截法如图,根据圆的对称性可知,O1,O3都在⊙O的直径AB上,设所截出的凳面直径为,那么x,x, ,又AB-(O1A+O3B)=50-x,所以=50,所以x=50( 24.证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D, 那么OlC∥PA∥O2D,且AC= AM,AD= AN. ∵OlP= O2P , ∴AD=AM,∴AM=AN. 25.解:连接OE、DE. ∵CD 是的直径, ∴ ∵G是AD的中点 ∴ 故GE是的切线. 答案:解:〔1〕所画⊙P如以下图,由图可知⊙P的半径为,而. 点在⊙P上. (2〕①直线向上平移1个单位经过点, 且经过点,, ,.. 那么,.直线与⊙P相切. ②,,. .,. 26.答案:〔1〕在△ABC中,∵AB=AC, ∴∠ABC=∠C. ∵DE∥BC,∴∠ABC=∠E, ∴∠E=∠C. 又∵∠ADB=∠C,      ∴∠ADB=∠E. 〔2〕当点D是弧BC的中点时,DE是⊙O的切线. 理由是:当点D是弧BC的中点时,那么有AD⊥BC,且AD过圆心O. 又∵DE∥BC,∴ AD⊥ED. ∴ DE是⊙O的切线. 〔3〕连结BO、AO,并延长AO交BC于点F, 那么AF⊥BC,且BF=BC=3. 又∵AB=5,∴AF=4. 设⊙O的半径为,在Rt△OBF中,OF=4-,OB=,BF=3,       ∴ =3+〔4-〕 解得=, ∴⊙O的半径是.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开