温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
辽宁省
营口市
重点中学
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )
A. B. C. D.
3.已知函数是上的偶函数,是的奇函数,且,则的值为( )
A. B. C. D.
4.函数的图象大致是( )
A. B.
C. D.
5.已知的部分图象如图所示,则的表达式是( )
A. B.
C. D.
6.已知函数,对任意的,,当时,,则下列判断正确的是( )
A. B.函数在上递增
C.函数的一条对称轴是 D.函数的一个对称中心是
7.已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )
A.内有无数条直线与平行 B. 且
C. 且 D.内的任何直线都与平行
8.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.
A. B. C. D.
9.已知复数z满足,则z的虚部为( )
A. B.i C.–1 D.1
10.已知复数满足(其中为的共轭复数),则的值为( )
A.1 B.2 C. D.
11.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则( )
A.48 B.63 C.99 D.120
12.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )
A.17种 B.27种 C.37种 D.47种
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.
14.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.
15.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.
甲获奖
乙获奖
丙获奖
丁获奖
甲的猜测
√
×
×
√
乙的猜测
×
○
○
√
丙的猜测
×
√
×
√
丁的猜测
○
○
√
×
16.若且时,不等式恒成立,则实数a的取值范围为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.
(1)若平面,证明:平面.
(2)求二面角的余弦值.
18.(12分)已知函数.
当时,求不等式的解集;
,,求a的取值范围.
19.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.
(1)求函数的最小正周期;
(2)求函数在区间上的值域.
20.(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;
平均车速超过的人数
平均车速不超过的人数
合计
男性驾驶员
女性驾驶员
合计
(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.
参考公式:其中
临界值表:
0.050
0.025
0.010
0.005
0.001
3.841
5.024
6.635
7.879
10.828
21.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:
用户分类
预计升级到的时段
人数
早期体验用户
2019年8月至2019年12月
270人
中期跟随用户
2020年1月至2021年12月
530人
后期用户
2023年1月及以后
200人
我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).
(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;
(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;
(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
22.(10分)如图,在四棱柱中,底面为菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.
【题目详解】
因为时,所以,,所以复数在复平面内对应的点位于第二象限.
故选:B.
【答案点睛】
本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.
2、A
【答案解析】
先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.
【题目详解】
当时,直线和直线,即直线为和直线互相垂直,
所以“”是直线和直线互相垂直“的充分条件,
当直线和直线互相垂直时,,解得.
所以“”是直线和直线互相垂直“的不必要条件.
:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.
当时,没有零点,
所以命题是假命题.
所以是真命题,是假命题,是假命题,是假命题.
故选:.
【答案点睛】
本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平.
3、B
【答案解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.
【题目详解】
为上的奇函数,
,
而函数是上的偶函数,,
,
故为周期函数,且周期为
故选:B
【答案点睛】
本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.
4、A
【答案解析】
根据复合函数的单调性,同增异减以及采用排除法,可得结果.
【题目详解】
当时,,
由在递增,
所以在递增
又是增函数,
所以在递增,故排除B、C
当时,若,则
所以在递减,而是增函数
所以在递减,所以A正确,D错误
故选:A
【答案点睛】
本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.
5、D
【答案解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.
【题目详解】
由图象可得,函数的最小正周期为,.
将点代入函数的解析式得,得,
,,则,,
因此,.
故选:D.
【答案点睛】
本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.
6、D
【答案解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.
【题目详解】
,
又,即,
有且仅有满足条件;
又,则,
,函数,
对于A,,故A错误;
对于B,由,
解得,故B错误;
对于C,当时,,故C错误;
对于D,由,故D正确.
故选:D
【答案点睛】
本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.
7、B
【答案解析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.
【题目详解】
A. 内有无数条直线与平行,则相交或,排除;
B. 且,故,当,不能得到 且,满足;
C. 且,,则相交或,排除;
D. 内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.
故选:.
【答案点睛】
本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.
8、B
【答案解析】
如图,已知,,
∴,解得 ,
∴,解得 .
∴折断后的竹干高为4.55尺
故选B.
9、C
【答案解析】
利用复数的四则运算可得,即可得答案.
【题目详解】
∵,∴,
∴,∴复数的虚部为.
故选:C.
【答案点睛】
本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.
10、D
【答案解析】
按照复数的运算法则先求出,再写出,进而求出.
【题目详解】
,
,
.
故选:D
【答案点睛】
本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.
11、C
【答案解析】
观察规律得根号内分母为分子的平方减1,从而求出n.
【题目详解】
解:观察各式发现规律,根号内分母为分子的平方减1
所以
故选:C.
【答案点睛】
本题考查了归纳推理,发现总结各式规律是关键,属于基础题.
12、C
【答案解析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.
【题目详解】
所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,
故选:C
【答案点睛】
本题考查古典概型,考查补集思想的应用,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.
【题目详解】
以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,
所以,所以,
,
则,
则
,
当时,,则单调递减,当时,,则单调