分享
2023学年芜湖市第一中学高三第二次模拟考试数学试卷(含解析).doc
下载文档

ID:13116

大小:2.33MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 芜湖市 第一 中学 第二次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,,,则,,的大小关系为( ) A. B. C. D. 2.已知满足,则的取值范围为( ) A. B. C. D. 3.若两个非零向量、满足,且,则与夹角的余弦值为( ) A. B. C. D. 4.集合,则( ) A. B. C. D. 5.已知向量,则向量在向量方向上的投影为( ) A. B. C. D. 6.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 A. B. C. D. 7.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 8.若,则函数在区间内单调递增的概率是( ) A. B. C. D. 9.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( ) A. B. C. D. 10.若函数有且仅有一个零点,则实数的值为( ) A. B. C. D. 11.双曲线的离心率为,则其渐近线方程为 A. B. C. D. 12.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( ) A. B.2 C. D.3 二、填空题:本题共4小题,每小题5分,共20分。 13.设函数,当时,记最大值为,则的最小值为______. 14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______. 15.若x,y满足,且y≥−1,则3x+y的最大值_____ 16.在中,角的对边分别为,且.若为钝角,,则的面积为____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在中,角所对的边分别为,,的面积. (1)求角C; (2)求周长的取值范围. 18.(12分)已知 (1)当时,判断函数的极值点的个数; (2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:. 19.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点. (1)求证:平面. (2)判断与平面的位置关系,并证明. 20.(12分)已知函数. (1)证明:当时,; (2)若函数只有一个零点,求正实数的值. 21.(12分)椭圆:的离心率为,点 为椭圆上的一点. (1)求椭圆的标准方程; (2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值. 22.(10分)已知. (1)若,求函数的单调区间; (2)若不等式恒成立,求实数的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 构造函数,利用导数求得的单调区间,由此判断出的大小关系. 【题目详解】 依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D. 【答案点睛】 本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题. 2、C 【答案解析】 设,则的几何意义为点到点的斜率,利用数形结合即可得到结论. 【题目详解】 解:设,则的几何意义为点到点的斜率, 作出不等式组对应的平面区域如图: 由图可知当过点的直线平行于轴时,此时成立; 取所有负值都成立; 当过点时,取正值中的最小值,,此时; 故的取值范围为; 故选:C. 【答案点睛】 本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在. 3、A 【答案解析】 设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求. 【题目详解】 设平面向量与的夹角为,,可得, 在等式两边平方得,化简得. 故选:A. 【答案点睛】 本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题. 4、D 【答案解析】 利用交集的定义直接计算即可. 【题目详解】 ,故, 故选:D. 【答案点睛】 本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题. 5、A 【答案解析】 投影即为,利用数量积运算即可得到结论. 【题目详解】 设向量与向量的夹角为, 由题意,得,, 所以,向量在向量方向上的投影为. 故选:A. 【答案点睛】 本题主要考察了向量的数量积运算,难度不大,属于基础题. 6、A 【答案解析】 求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,, 求出等式左边式子的范围,将等式右边代入,从而求解. 【题目详解】 解:由题意可得,焦点F(1,0),准线方程为x=−1, 过点P作PM垂直于准线,M为垂足, 由抛物线的定义可得|PF|=|PM|=x+1, 记∠KPF的平分线与轴交于 根据角平分线定理可得, , 当时,, 当时,, , 综上:. 故选:A. 【答案点睛】 本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题. 7、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 8、B 【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B. 9、A 【答案解析】 根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出. 【题目详解】 由于复数对应复平面上的点,,则, ,,因此,. 故选:A. 【答案点睛】 本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题. 10、D 【答案解析】 推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果. 【题目详解】 , 则, , ,所以,函数的图象关于直线对称. 若函数的零点不为,则该函数的零点必成对出现,不合题意. 所以,,即,解得或. ①当时,令,得,作出函数与函数的图象如下图所示: 此时,函数与函数的图象有三个交点,不合乎题意; ②当时,,,当且仅当时,等号成立,则函数有且只有一个零点. 综上所述,. 故选:D. 【答案点睛】 本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题. 11、A 【答案解析】 分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解: 因为渐近线方程为,所以渐近线方程为,选A. 点睛:已知双曲线方程求渐近线方程:. 12、B 【答案解析】 过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果. 【题目详解】 过点作准线的垂线,垂足为,与轴交于点, 由抛物线解析式知:,准线方程为. ,,,, 由抛物线定义知:,,, . 由抛物线性质得:,解得:, . 故选:. 【答案点睛】 本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 易知,设,,利用绝对值不等式的性质即可得解. 【题目详解】 , 设,, 令, 当时,,所以单调递减 令, 当时,,所以单调递增 所以当时, , , 则 则, 即 故答案为:. 【答案点睛】 本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题. 14、 【答案解析】 先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围. 【题目详解】 因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解. 时符合题意. 时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为. 故答案为: 【答案点睛】 本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识. 15、5. 【答案解析】 由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【题目详解】 由题意作出可行域如图阴影部分所示. 设, 当直线经过点时,取最大值5. 故答案为:5 【答案点睛】 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 16、 【答案解析】 转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解. 【题目详解】 因为, 所以. 又因为,且为锐角, 所以. 由余弦定理得, 即,解得, 所以 故答案为: 【答案点睛】 本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(Ⅰ)(Ⅱ) 【答案解析】 (Ⅰ)由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并结合正弦定理可得到,利用,,可得到,进而可求出周长的范围. 【题目详解】 解:(Ⅰ)由可知, ∴.由正弦定理得. 由余弦定理得,∴. (Ⅱ)由(Ⅰ)知,∴,. 的周长为 . ∵,∴,∴, ∴的周长的取值范围为. 【答案点睛】 本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题. 18、(1)没有极值点;(2)证明见解析 【答案解析】 (1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断; (2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证. 【题目详解】 (1)当时,,, 所以在递增,所以, 所以在递增,所以函数没有极值点. (2)由题,, 若存在实数,使直线与函数的图象交于不同的两点,即存在且,使. 由可得,, 由(1)可知,可得., 所以,即, 下面证明,只需证明:, 令,则证,即. 设,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开