温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
芜湖市
第一
中学
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,,则,,的大小关系为( )
A. B. C. D.
2.已知满足,则的取值范围为( )
A. B. C. D.
3.若两个非零向量、满足,且,则与夹角的余弦值为( )
A. B. C. D.
4.集合,则( )
A. B. C. D.
5.已知向量,则向量在向量方向上的投影为( )
A. B. C. D.
6.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
7.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )
A. B. C. D.
8.若,则函数在区间内单调递增的概率是( )
A. B. C. D.
9.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )
A. B. C. D.
10.若函数有且仅有一个零点,则实数的值为( )
A. B. C. D.
11.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
12.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )
A. B.2 C. D.3
二、填空题:本题共4小题,每小题5分,共20分。
13.设函数,当时,记最大值为,则的最小值为______.
14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.
15.若x,y满足,且y≥−1,则3x+y的最大值_____
16.在中,角的对边分别为,且.若为钝角,,则的面积为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角所对的边分别为,,的面积.
(1)求角C;
(2)求周长的取值范围.
18.(12分)已知
(1)当时,判断函数的极值点的个数;
(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.
19.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.
(1)求证:平面.
(2)判断与平面的位置关系,并证明.
20.(12分)已知函数.
(1)证明:当时,;
(2)若函数只有一个零点,求正实数的值.
21.(12分)椭圆:的离心率为,点 为椭圆上的一点.
(1)求椭圆的标准方程;
(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.
22.(10分)已知.
(1)若,求函数的单调区间;
(2)若不等式恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.
【题目详解】
依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.
【答案点睛】
本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.
2、C
【答案解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.
【题目详解】
解:设,则的几何意义为点到点的斜率,
作出不等式组对应的平面区域如图:
由图可知当过点的直线平行于轴时,此时成立;
取所有负值都成立;
当过点时,取正值中的最小值,,此时;
故的取值范围为;
故选:C.
【答案点睛】
本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.
3、A
【答案解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.
【题目详解】
设平面向量与的夹角为,,可得,
在等式两边平方得,化简得.
故选:A.
【答案点睛】
本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.
4、D
【答案解析】
利用交集的定义直接计算即可.
【题目详解】
,故,
故选:D.
【答案点睛】
本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.
5、A
【答案解析】
投影即为,利用数量积运算即可得到结论.
【题目详解】
设向量与向量的夹角为,
由题意,得,,
所以,向量在向量方向上的投影为.
故选:A.
【答案点睛】
本题主要考察了向量的数量积运算,难度不大,属于基础题.
6、A
【答案解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,
求出等式左边式子的范围,将等式右边代入,从而求解.
【题目详解】
解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,
,
当时,,
当时,,
,
综上:.
故选:A.
【答案点睛】
本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.
7、C
【答案解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得
【题目详解】
抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.
故选:C
【答案点睛】
本小题主要考查抛物线的弦长的求法,属于基础题.
8、B
【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.
9、A
【答案解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.
【题目详解】
由于复数对应复平面上的点,,则,
,,因此,.
故选:A.
【答案点睛】
本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.
10、D
【答案解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.
【题目详解】
,
则,
,
,所以,函数的图象关于直线对称.
若函数的零点不为,则该函数的零点必成对出现,不合题意.
所以,,即,解得或.
①当时,令,得,作出函数与函数的图象如下图所示:
此时,函数与函数的图象有三个交点,不合乎题意;
②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.
综上所述,.
故选:D.
【答案点睛】
本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.
11、A
【答案解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
12、B
【答案解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.
【题目详解】
过点作准线的垂线,垂足为,与轴交于点,
由抛物线解析式知:,准线方程为.
,,,,
由抛物线定义知:,,,
.
由抛物线性质得:,解得:,
.
故选:.
【答案点睛】
本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
易知,设,,利用绝对值不等式的性质即可得解.
【题目详解】
,
设,,
令,
当时,,所以单调递减
令,
当时,,所以单调递增
所以当时,
,
,
则
则,
即
故答案为:.
【答案点睛】
本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.
14、
【答案解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.
【题目详解】
因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.
时符合题意.
时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.
故答案为:
【答案点睛】
本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.
15、5.
【答案解析】
由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【题目详解】
由题意作出可行域如图阴影部分所示.
设,
当直线经过点时,取最大值5.
故答案为:5
【答案点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
16、
【答案解析】
转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.
【题目详解】
因为,
所以.
又因为,且为锐角,
所以.
由余弦定理得,
即,解得,
所以
故答案为:
【答案点睛】
本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)(Ⅱ)
【答案解析】
(Ⅰ)由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并结合正弦定理可得到,利用,,可得到,进而可求出周长的范围.
【题目详解】
解:(Ⅰ)由可知,
∴.由正弦定理得.
由余弦定理得,∴.
(Ⅱ)由(Ⅰ)知,∴,.
的周长为
.
∵,∴,∴,
∴的周长的取值范围为.
【答案点睛】
本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题.
18、(1)没有极值点;(2)证明见解析
【答案解析】
(1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断;
(2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证.
【题目详解】
(1)当时,,,
所以在递增,所以,
所以在递增,所以函数没有极值点.
(2)由题,,
若存在实数,使直线与函数的图象交于不同的两点,即存在且,使.
由可得,,
由(1)可知,可得.,
所以,即,
下面证明,只需证明:,
令,则证,即.
设,